9 research outputs found

    The Use of Tactile Sensors in Oral and Maxillofacial Surgery: An Overview

    Get PDF
    Background: This overview aimed to characterize the type, development, and use of haptic technologies for maxillofacial surgical purposes. The work aim is to summarize and evaluate current advantages, drawbacks, and design choices of presented technologies for each field of application in order to address and promote future research as well as to provide a global view of the issue. Methods: Relevant manuscripts were searched electronically through Scopus, MEDLINE/PubMed, and Cochrane Library databases until 1 November 2022. Results: After analyzing the available literature, 31 articles regarding tactile sensors and interfaces, sensorized tools, haptic technologies, and integrated platforms in oral and maxillofacial surgery have been included. Moreover, a quality rating is provided for each article following appropriate evaluation metrics. Discussion: Many efforts have been made to overcome the technological limits of computed assistant diagnosis, surgery, and teaching. Nonetheless, a research gap is evident between dental/maxillofacial surgery and other specialties such as endovascular, laparoscopic, and microsurgery; especially for what concerns electrical and optical-based sensors for instrumented tools and sensorized tools for contact forces detection. The application of existing technologies is mainly focused on digital simulation purposes, and the integration into Computer Assisted Surgery (CAS) is far from being widely actuated. Virtual reality, increasingly adopted in various fields of surgery (e.g., sino-nasal, traumatology, implantology) showed interesting results and has the potential to revolutionize teaching and learning. A major concern regarding the actual state of the art is the absence of randomized control trials and the prevalence of case reports, retrospective cohorts, and experimental studies. Nonetheless, as the research is fast growing, we can expect to see many developments be incorporated into maxillofacial surgery practice, after adequate evaluation by the scientific community

    Diagnosis and Treatment of Midface Trauma in the Context of Polytrauma: Characteristics during COVID-19 Pandemic Conditions

    Get PDF
    Midfacial trauma is never an immediate therapeutic emergency excepting cases with nasal bleeding and risk of aspiration or requiring a permeable airway that will allow intubation when appropriate. The patient with polytraumas and midfacial fractures who needs ear, nose, and throat (ENT) or oral and maxillofacial (OMF) surgery should be reassessed at 24 and 48 hours to determine the optimal operating time. The surgical indication should be established according to esthetic and functional deficits. We consider that the optimal operative moment for the lesions of the midface is at 4–5 days after the trauma, under the conditions of a stable hemodynamic, respiratory, and afebrile patient. We propose the schematic presentation of the principles of diagnosis and treatment for midface trauma. We will discuss also some aspects of midfacial trauma during coronavirus disease-2019 (COVID-19) pandemic conditions. We must assume every patient with polytrauma as a COVID-19-positive patient. So, it is necessary to have a special circuit for a suspect COVID-19 polytrauma patient between emergency room (ER) department, operating room, and intensive care unit (ICU). All medical team must wear high-level personal protective equipment (PPE) during emergency treatment of a craniofacial trauma in the context of polytrauma until we get the result of RT-PCR testing

    The evaluation of a novel haptic machining VR-based process planning system using an original process planning usability method

    Get PDF
    This thesis provides an original piece of work and contribution to knowledge by creating a new process planning system; Haptic Aided Process Planning (HAPP). This system is based on the combination of haptics and virtual reality (VR). HAPP creates a simulative machining environment where Process plans are automatically generated from the real time logging of a user’s interaction. Further, through the application of a novel usability test methodology, a deeper study of how this approach compares to conventional process planning was undertaken. An abductive research approach was selected and an iterative and incremental development methodology chosen. Three development cycles were undertaken with evaluation studies carried out at the end of each. Each study, the pre-pilot, pilot and industrial, identified progressive refinements to both the usability of HAPP and the usability evaluation method itself. HAPP provided process planners with an environment similar to which they are already familiar. Visual images were used to represent tools and material whilst a haptic interface enabled their movement and positioning by an operator in a manner comparable to their native setting. In this way an intuitive interface was developed that allowed users to plan the machining of parts consisting of features that can be machined on a pillar drill, 21/2D axis milling machine or centre lathe. The planning activities included single or multiple set ups, fixturing and sequencing of cutting operations. The logged information was parsed and output to a process plan including route sheets, operation sheets, tool lists and costing information, in a human readable format. The system evaluation revealed that HAPP, from an expert planners perspective is perceived to be 70% more satisfying to use, 66% more efficient in completing process plans, primarily due to the reduced cognitive load, is more effective producing a higher quality output of information and is 20% more learnable than a traditional process planning approach

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    A haptics-assisted cranio-maxillofacial surgery planning system for restoring skeletal anatomy in complex trauma cases

    No full text
    Cranio-maxillofacial (CMF) surgery to restore normal skeletal anatomy in patients with serious trauma to the face can be both complex and time-consuming. But it is generally accepted that careful pre-operative planning leads to a better outcome with a higher degree of function and reduced morbidity in addition to reduced time in the operating room. However, today's surgery planning systems are primitive, relying mostly on the user's ability to plan complex tasks with a two-dimensional graphical interface. A system for planning the restoration of skeletal anatomy in facial trauma patients using a virtual model derived from patient-specific CT data. The system combines stereo visualization with six degrees-of-freedom, high-fidelity haptic feedback that enables analysis, planning, and preoperative testing of alternative solutions for restoring bone fragments to their proper positions. The stereo display provides accurate visual spatial perception, and the haptics system provides intuitive haptic feedback when bone fragments are in contact as well as six degrees-of-freedom attraction forces for precise bone fragment alignment. A senior surgeon without prior experience of the system received 45 min of system training. Following the training session, he completed a virtual reconstruction in 22 min of a complex mandibular fracture with an adequately reduced result. Preliminary testing with one surgeon indicates that our surgery planning system, which combines stereo visualization with sophisticated haptics, has the potential to become a powerful tool for CMF surgery planning. With little training, it allows a surgeon to complete a complex plan in a short amount of time
    corecore