2,232 research outputs found

    Wearable haptic systems for the fingertip and the hand: taxonomy, review and perspectives

    Get PDF
    In the last decade, we have witnessed a drastic change in the form factor of audio and vision technologies, from heavy and grounded machines to lightweight devices that naturally fit our bodies. However, only recently, haptic systems have started to be designed with wearability in mind. The wearability of haptic systems enables novel forms of communication, cooperation, and integration between humans and machines. Wearable haptic interfaces are capable of communicating with the human wearers during their interaction with the environment they share, in a natural and yet private way. This paper presents a taxonomy and review of wearable haptic systems for the fingertip and the hand, focusing on those systems directly addressing wearability challenges. The paper also discusses the main technological and design challenges for the development of wearable haptic interfaces, and it reports on the future perspectives of the field. Finally, the paper includes two tables summarizing the characteristics and features of the most representative wearable haptic systems for the fingertip and the hand

    Doctor of Philosophy

    Get PDF
    dissertationVirtual environments provide a consistent and relatively inexpensive method of training individuals. They often include haptic feedback in the form of forces applied to a manipulandum or thimble to provide a more immersive and educational experience. However, the limited haptic feedback provided in these systems tends to be restrictive and frustrating to use. Providing tactile feedback in addition to this kinesthetic feedback can enhance the user's ability to manipulate and interact with virtual objects while providing a greater level of immersion. This dissertation advances the state-of-the-art by providing a better understanding of tactile feedback and advancing combined tactilekinesthetic systems. The tactile feedback described within this dissertation is provided by a finger-mounted device called the contact location display (CLD). Rather than displaying the entire contact surface, the device displays (feeds back) information only about the center of contact between the user's finger and a virtual surface. In prior work, the CLD used specialized two-dimensional environments to provide smooth tactile feedback. Using polygonal environments would greatly enhance the device's usefulness. However, the surface discontinuities created by the facets on these models are rendered through the CLD, regardless of traditional force shading algorithms. To address this issue, a haptic shading algorithm was developed to provide smooth tactile and kinesthetic interaction with general polygonal models. Two experiments were used to evaluate the shading algorithm. iv To better understand the design requirements of tactile devices, three separate experiments were run to evaluate the perception thresholds for cue localization, backlash, and system delay. These experiments establish quantitative design criteria for tactile devices. These results can serve as the maximum (i.e., most demanding) device specifications for tactile-kinesthetic haptic systems where the user experiences tactile feedback as a function of his/her limb motions. Lastly, a revision of the CLD was constructed and evaluated. By taking the newly evaluated design criteria into account, the CLD device became smaller and lighter weight, while providing a full two degree-of-freedom workspace that covers the bottom hemisphere of the finger. Two simple manipulation experiments were used to evaluate the new CLD device

    Tilt simulation : virtual reality based upper extremity stroke rehabilitation

    Get PDF
    The primary objective of this research is to design a recreational rehabilitation videogame that interactively encourages purposeful upper extremity gross motor movements. The simulation is also capable of continuous game modification to fit changing therapy goals, to match the needs of the players, and to provide continued motivation while capturing the interactive repetition. This thesis explains the design and features of this latest simulation - Tilt. Tilt uses physics to develop an engaging training experience and provides a realistic approach to virtual reality simulation including friction, elasticity and collisions between objects. It is designed to train upper extremity function as a unit involving multiple modalities simultaneously, either unilaterally or bilaterally. It is the latest addition to the NJIT Robot Assisted Virtual Rehabilitation (RAVR) system. It Employs the Cyber Glove and Flock of Birds systems to interface with the real world. This allows training motor function of patients that come to use in day to day life like making use of hands, fingers and shoulders to pick small objects on table, moving them and placing them elsewhere

    Haptic Touch and Hand Ability

    Get PDF
    • …
    corecore