569 research outputs found

    Influence of viewing conditions on cross-media color matching

    Get PDF
    We investigated observer metamerism under a variety of viewing conditions, in a set of color-matching experiments using displays and printed color samples under specific light sources. A selection was made of light sources with different illuminances, spectral power distributions, and correlated color temperatures, as well as displays with different sets of primaries. A panel of 157 observers with normal color vision and ages between 20 and 59 years old performed 5465 visual color matches around 9 different color centers. The results from the simulated and real experiments were quite different. Specifically, the mean color difference from the mean changed with experimental viewing conditions, ranging from 0.73 to 1.64 CIELAB units (average 0.99 CIELAB units) in simulated experiments, and from 3.12 to 4.03 CIELAB units (average 3.55 CIELAB units) in real experiments. In real experiments, observers’ variability reduced for light sources with high illuminance and high correlated color temperature. Spectral power distributions affected observer metamerism, but the role played by the primaries of the two displays employed was unclear.National Natural Science Foundation of China (NNSFC), 61675029. Ministry of Economy and Competitiveness of the Government of Spain, co-financed by the European Regional Development Fund (ERDF) of the European Union, research project FIS2016-80983-P

    Individual Colorimetric Observers for Personalized Color Imaging

    Get PDF
    Colors are typically described by three values such as RGB, XYZ, and HSV. This is rooted to the fact that humans possess three types of photoreceptors under photopic conditions, and human color vision can be characterized by a set of three color matching functions (CMFs). CMFs integrate spectra to produce three colorimetric values that are related to visual responses. In reality, large variations in CMFs exist among color-normal populations. Thus, a pair of two spectrally different stimuli might be a match for one person but a mismatch for another person, also known as observer metamerism. Observer metamerism is a serious issue in color-critical applications such as soft proofing in graphic arts and color grading in digital cinema, where colors are compared on different displays. Due to observer metamerism, calibrated displays might not appear correctly, and one person might disagree with color adjustments made by another person. The recent advent of wide color gamut display technologies (e.g., LEDs, OLEDs, lasers, and Quantum Dots) has made observer metamerism even more serious due to their spectrally narrow primaries. The variations among normal color vision and observer metamerism have been overlooked for many years. The current typical color imaging workflow uses a single standard observer assuming all the color-normal people possess the same CMFs. This dissertation provides a possible solution for observer metamerism in color-critical applications by personalized color imaging introducing individual colorimetric observers. In this dissertation, at first, color matching data were collected to derive and validate CMFs for individual colorimetric observers. The data from 151 color-normal observers were obtained at four different locations. Second, two types of individual colorimetric observer functions were derived and validated. One is an individual colorimetric observer model, an extension of the CIE 2006 physiological observer incorporating eight physiological parameters to model individuals in addition to age and field size inputs. The other is a set of categorical observer functions providing a more convenient approach towards the personalized color imaging. Third, two workflows were proposed to characterize human color vision: one using a nomaloscope and the other using proposed spectral pseudoisochromatic images. Finally, the personalized color imaging was evaluated in a color image matching study on an LCD monitor and a laser projector and in a perceived color difference study on a SHARP Quattron display. The personalized color imaging was implemented using a newly introduced ICC profile, iccMAX

    Expanding Dimensionality in Cinema Color: Impacting Observer Metamerism through Multiprimary Display

    Get PDF
    Television and cinema display are both trending towards greater ranges and saturation of reproduced colors made possible by near-monochromatic RGB illumination technologies. Through current broadcast and digital cinema standards work, system designs employing laser light sources, narrow-band LED, quantum dots and others are being actively endorsed in promotion of Wide Color Gamut (WCG). Despite artistic benefits brought to creative content producers, spectrally selective excitations of naturally different human color response functions exacerbate variability of observer experience. An exaggerated variation in color-sensing is explicitly counter to the exhaustive controls and calibrations employed in modern motion picture pipelines. Further, singular standard observer summaries of human color vision such as found in the CIE’s 1931 and 1964 color matching functions and used extensively in motion picture color management are deficient in recognizing expected human vision variability. Many researchers have confirmed the magnitude of observer metamerism in color matching in both uniform colors and imagery but few have shown explicit color management with an aim of minimized difference in observer perception variability. This research shows that not only can observer metamerism influences be quantitatively predicted and confirmed psychophysically but that intentionally engineered multiprimary displays employing more than three primaries can offer increased color gamut with drastically improved consistency of experience. To this end, a seven-channel prototype display has been constructed based on observer metamerism models and color difference indices derived from the latest color vision demographic research. This display has been further proven in forced-choice paired comparison tests to deliver superior color matching to reference stimuli versus both contemporary standard RGB cinema projection and recently ratified standard laser projection across a large population of color-normal observers

    COMPUTER-AIDED QUANTITATIVE EARLY DIAGNOSIS OF DIABETIC FOOT

    Get PDF
    Diabetes is an incurable metabolic disease characterized by high blood sugar levels. The feet of people with diabetes are at the risk of a variety of pathological consequences including peripheral vascular disease, deformity, ulceration, and ultimately amputation. The key to managing the diabetic foot is prevention and early detection. Unfortunately, current hospital centered reactive diabetes care and the availability of inadequate qualitative diagnostic screening procedures causes physicians to miss the diagnosis in 61% of the patients. We have developed a computer aided diagnostic system for early detection of diabetic foot. The key idea is that diabetic foot exhibits significant neuropathic and vascular damages. When a diabetic foot is placed under cold stress, the thermal recovery will be much slower. This thermal recovery speed can be a quantitative measure for the diagnosis of diabetic foot condition. In our research, thermal recovery of the feet following cold stress is captured using an infrared camera. The captured infrared video is then filtered, segmented, and registered. The temperature recovery at each point on the foot is extracted and analyzed using a thermal regulation model, and the problematic regions are identified. In this thesis, we present our research on the following aspects of the developed computer aided diagnostic systems: subject measurement protocols, a trustful numerical model of the camera noise and noise parameter estimations, infrared video segmentation, new models of thermal regulations, thermal patterns classifications, and our preliminary findings based on small scale clinical study of about 40 subjects, which demonstrated the potential the new diagnostic system

    NASA Tech Briefs, August 2000

    Get PDF
    Topics include: Simulation/Virtual Reality; Test and Measurement; Computer-Aided Design and Engineering; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery/Automation; Manufacturing/Fabrication; Mathematics and Information Sciences; Medical Design

    A Drift Towards Nostalgia: The River Trip as Journal of a Changing View of American Wilderness

    Get PDF
    As early as the 1820s and 1830s, observers of the American scene, such as George Catlin, John James Audubon, and Alexis de Tocqueville, were expressing misgivings over the rapid settlement of the American West. In their concern over the passing of pristine landscapes and native cultures was a note of nostalgia for an earlier time, the era of exploration, whose journals echoed the freshness of discovery and spoke of the beauty and inexhaustible promise of the New World. The elegiac tone has become more explicit in our own time. In the works of twentieth century writers is seen a haunting awareness that nature itself is vulnerable to human actions, and that the option of even glimpsing a pristine landscape may be vanishing. This paper explores this shifting perception of nature by analyzing selected works of American literature or New World exploration which deal with river experiences or travels. The time span of this study ranges from the 1970s back to early European exploration of North America, particularly the French explorers of the sixteenth and seventeenth centuries. Writers throughout the time span studied have viewed rivers as representing wholeness, integrity; or as ultimate primordial elements of the natural world, and, by extension, of continental, cosmic forces, large-scale cycles and patterns--though manifestations of such qualities become more explicit in twentieth century works. Rivers, being complex and unpredictable, an unfamiliar medium, have always posed the possibility of upset, loss, or privation. A river also signifies passage; and passage, to the early explorers, meant access to fabled lands and riches. But perceptions and needs have changed. To today\u27s traveler a river and its environment offer the possibility of purification, renewal, identification with the unfathomable. Such a transformation may be accompanied by a lasting change in perception or perspective

    Cruiser and PhoTable: Exploring Tabletop User Interface Software for Digital Photograph Sharing and Story Capture

    Get PDF
    Digital photography has not only changed the nature of photography and the photographic process, but also the manner in which we share photographs and tell stories about them. Some traditional methods, such as the family photo album or passing around piles of recently developed snapshots, are lost to us without requiring the digital photos to be printed. The current, purely digital, methods of sharing do not provide the same experience as printed photographs, and they do not provide effective face-to-face social interaction around photographs, as experienced during storytelling. Research has found that people are often dissatisfied with sharing photographs in digital form. The recent emergence of the tabletop interface as a viable multi-user direct-touch interactive large horizontal display has provided the hardware that has the potential to improve our collocated activities such as digital photograph sharing. However, while some software to communicate with various tabletop hardware technologies exists, software aspects of tabletop user interfaces are still at an early stage and require careful consideration in order to provide an effective, multi-user immersive interface that arbitrates the social interaction between users, without the necessary computer-human interaction interfering with the social dialogue. This thesis presents PhoTable, a social interface allowing people to effectively share, and tell stories about, recently taken, unsorted digital photographs around an interactive tabletop. In addition, the computer-arbitrated digital interaction allows PhoTable to capture the stories told, and associate them as audio metadata to the appropriate photographs. By leveraging the tabletop interface and providing a highly usable and natural interaction we can enable users to become immersed in their social interaction, telling stories about their photographs, and allow the computer interaction to occur as a side-effect of the social interaction. Correlating the computer interaction with the corresponding audio allows PhoTable to annotate an automatically created digital photo album with audible stories, which may then be archived. These stories remain useful for future sharing -- both collocated sharing and remote (e.g. via the Internet) -- and also provide a personal memento both of the event depicted in the photograph (e.g. as a reminder) and of the enjoyable photo sharing experience at the tabletop. To provide the necessary software to realise an interface such as PhoTable, this thesis explored the development of Cruiser: an efficient, extensible and reusable software framework for developing tabletop applications. Cruiser contributes a set of programming libraries and the necessary application framework to facilitate the rapid and highly flexible development of new tabletop applications. It uses a plugin architecture that encourages code reuse, stability and easy experimentation, and leverages the dedicated computer graphics hardware and multi-core processors of modern consumer-level systems to provide a responsive and immersive interactive tabletop user interface that is agnostic to the tabletop hardware and operating platform, using efficient, native cross-platform code. Cruiser's flexibility has allowed a variety of novel interactive tabletop applications to be explored by other researchers using the framework, in addition to PhoTable. To evaluate Cruiser and PhoTable, this thesis follows recommended practices for systems evaluation. The design rationale is framed within the above scenario and vision which we explore further, and the resulting design is critically analysed based on user studies, heuristic evaluation and a reflection on how it evolved over time. The effectiveness of Cruiser was evaluated in terms of its ability to realise PhoTable, use of it by others to explore many new tabletop applications, and an analysis of performance and resource usage. Usability, learnability and effectiveness of PhoTable was assessed on three levels: careful usability evaluations of elements of the interface; informal observations of usability when Cruiser was available to the public in several exhibitions and demonstrations; and a final evaluation of PhoTable in use for storytelling, where this had the side effect of creating a digital photo album, consisting of the photographs users interacted with on the table and associated audio annotations which PhoTable automatically extracted from the interaction. We conclude that our approach to design has resulted in an effective framework for creating new tabletop interfaces. The parallel goal of exploring the potential for tabletop interaction as a new way to share digital photographs was realised in PhoTable. It is able to support the envisaged goal of an effective interface for telling stories about one's photos. As a serendipitous side-effect, PhoTable was effective in the automatic capture of the stories about individual photographs for future reminiscence and sharing. This work provides foundations for future work in creating new ways to interact at a tabletop and to the ways to capture personal stories around digital photographs for sharing and long-term preservation

    Cruiser and PhoTable: Exploring Tabletop User Interface Software for Digital Photograph Sharing and Story Capture

    Get PDF
    Digital photography has not only changed the nature of photography and the photographic process, but also the manner in which we share photographs and tell stories about them. Some traditional methods, such as the family photo album or passing around piles of recently developed snapshots, are lost to us without requiring the digital photos to be printed. The current, purely digital, methods of sharing do not provide the same experience as printed photographs, and they do not provide effective face-to-face social interaction around photographs, as experienced during storytelling. Research has found that people are often dissatisfied with sharing photographs in digital form. The recent emergence of the tabletop interface as a viable multi-user direct-touch interactive large horizontal display has provided the hardware that has the potential to improve our collocated activities such as digital photograph sharing. However, while some software to communicate with various tabletop hardware technologies exists, software aspects of tabletop user interfaces are still at an early stage and require careful consideration in order to provide an effective, multi-user immersive interface that arbitrates the social interaction between users, without the necessary computer-human interaction interfering with the social dialogue. This thesis presents PhoTable, a social interface allowing people to effectively share, and tell stories about, recently taken, unsorted digital photographs around an interactive tabletop. In addition, the computer-arbitrated digital interaction allows PhoTable to capture the stories told, and associate them as audio metadata to the appropriate photographs. By leveraging the tabletop interface and providing a highly usable and natural interaction we can enable users to become immersed in their social interaction, telling stories about their photographs, and allow the computer interaction to occur as a side-effect of the social interaction. Correlating the computer interaction with the corresponding audio allows PhoTable to annotate an automatically created digital photo album with audible stories, which may then be archived. These stories remain useful for future sharing -- both collocated sharing and remote (e.g. via the Internet) -- and also provide a personal memento both of the event depicted in the photograph (e.g. as a reminder) and of the enjoyable photo sharing experience at the tabletop. To provide the necessary software to realise an interface such as PhoTable, this thesis explored the development of Cruiser: an efficient, extensible and reusable software framework for developing tabletop applications. Cruiser contributes a set of programming libraries and the necessary application framework to facilitate the rapid and highly flexible development of new tabletop applications. It uses a plugin architecture that encourages code reuse, stability and easy experimentation, and leverages the dedicated computer graphics hardware and multi-core processors of modern consumer-level systems to provide a responsive and immersive interactive tabletop user interface that is agnostic to the tabletop hardware and operating platform, using efficient, native cross-platform code. Cruiser's flexibility has allowed a variety of novel interactive tabletop applications to be explored by other researchers using the framework, in addition to PhoTable. To evaluate Cruiser and PhoTable, this thesis follows recommended practices for systems evaluation. The design rationale is framed within the above scenario and vision which we explore further, and the resulting design is critically analysed based on user studies, heuristic evaluation and a reflection on how it evolved over time. The effectiveness of Cruiser was evaluated in terms of its ability to realise PhoTable, use of it by others to explore many new tabletop applications, and an analysis of performance and resource usage. Usability, learnability and effectiveness of PhoTable was assessed on three levels: careful usability evaluations of elements of the interface; informal observations of usability when Cruiser was available to the public in several exhibitions and demonstrations; and a final evaluation of PhoTable in use for storytelling, where this had the side effect of creating a digital photo album, consisting of the photographs users interacted with on the table and associated audio annotations which PhoTable automatically extracted from the interaction. We conclude that our approach to design has resulted in an effective framework for creating new tabletop interfaces. The parallel goal of exploring the potential for tabletop interaction as a new way to share digital photographs was realised in PhoTable. It is able to support the envisaged goal of an effective interface for telling stories about one's photos. As a serendipitous side-effect, PhoTable was effective in the automatic capture of the stories about individual photographs for future reminiscence and sharing. This work provides foundations for future work in creating new ways to interact at a tabletop and to the ways to capture personal stories around digital photographs for sharing and long-term preservation

    Proceedings of the 25th Bilateral Student Workshop CTU Prague and HTW Dresden - User Interfaces & Visualization

    Get PDF
    This technical report publishes the proceedings of the 25th Bilateral Student Workshop CTU Prague and HTW Dresden - User Interfaces & Visualization -, which was held on the 25th and 26th November 2021. The workshop offers a possibility for young scientists to present their current research work in the fields of computer graphics, human-computer-interaction, robotics and usability. The works is meant as a platform to bring together researchers from both the Czech Technical University in Prague (CTU) and the University of Applied Sciences Dresden (HTW). The German Academic Exchange Service offers its financial support to allow student participants the bilateral exchange between Prague and Dresden.:1) Multiprojection of Langweil´s model, p.4 2) Design of an assistant for persons interested in study at CTU FEE, p.8 3) Sonification of a juggling performance, p.12 4) Investigating the Role of Usability User Experience and Aesthetics for Industrial Human–Machine Interfaces, p.16 5) Using optically illusive architecture to navigate users in Virtual Reality, p.23 6) Speed and Required Precision of Grabbing Physical Spheres in VR, p.27 7) ReFlex - A Framework for Research on Elastic Displays, p.32 8) Digital Reading Stand (DRS), p.38 9) IDOVIR – Infrastructure for Documentation of Virtual Reconstructions, p.45 10) Tracking multiple VR users in a shared physical space, p.50 11) Towards Aesthetics of Subjectivity in InfoVis, p.53 12) VentConnect: live to life and the octopus in the hospital server room, p.60 13) Nice noise: background noise enhancement with generated musical content, p.66 14) Parametric Curve Labeling, p.7
    corecore