4 research outputs found

    Increasing security in the physical layer of wireless communication

    Get PDF
    This paper introduces a concept of increasing securing in the Physical layer (PHY) of wireless communication. It gives a short description of current status of wireless standards and their security. Despite the existence of advanced security protocols such as IEEE 802.11i or WLAN VPNs, wireless networks still remain vulnerable to denial-of-service (DoS) attacks aiming at PHY and Data Link Layers. The new solution challenges the problems with the currently defined PHY and Data Link layers. The concept introduced here, holds a promise of descending with some of the security measures to the lower layers of the TCP/IP and in this way not only increases security but also efficiency and performance. In addition this model would reduce management overhead and security architecture complexity. The proposed solution is dealing with: encryption implemented as part of modulation techniques as well as authentication procedures partially deployed within the first two layers of Open System Interconnection (OSI) protocol stack. The introduced model attempts to solve problems related to DoS that is focused on Data Link Layer, eavesdropping and man-in-the-middle (MITM) attacks. Additionally, there are presented some ideas for future research in the area of protection from malicious activity aimed at the PHY Layer – e.g., jamming attacks, as well as other security issues such as eavesdropping prevention by use of physics laws and tunnelling as another layer of protection to ensure privacy and signal robustness. The potential deployment of this technology embraces Wireless Local Area Networks (WLANs) as well as the emerging IEEE 802.16e (mobile WiMAX) standard. In this paper there are considered and analysed practical needs, defined necessary steps and set priorities. In the final part, there are presented challenges concerning the research and there is established a background for the consecutive papers

    A Methodology to Counter DoS Attacks in Mobile IP Communication

    Get PDF

    A Handover Security Mechanism Employing the Diffie-Hellman Key Exchange Approach for the IEEE802.16e Wireless Networks

    No full text
    In this paper, we propose a handover authentication mechanism, called the handover key management and authentication scheme (HaKMA for short), which as a three-layer authentication architecture is a new version of our previous work, the Diffie-Hellman-PKDS-based authentication method (DiHam for short) improving its key generation flow and adding a handover authentication scheme to respectively speed up the handover process and increase the security level for mobile stations (MSs). AAA server supported authentication is also enhanced by invoking an improved extensible authentication protocol (EAP). According to the analyses of this study the HaKMA can effectively and efficiently provide user authentication and balance data security and system performance during handover
    corecore