307 research outputs found

    High performance hardware architecture for half-pixel accurate H.264 motion estimation

    Get PDF
    In this paper, we present a high performance and low cost hardware architecture for real-time implementation of half-pel accurate variable block size motion estimation for H.264 / MPEG4 Part 10 video coding. The proposed architecture includes a novel half-pel interpolation hardware that is shared by novel half-pel search hardwares designed for each block size. This half-pel accurate motion estimation hardware is designed to be used as part of a complete H.264 video coding system for portable applications. The proposed architecture is implemented in Verilog HDL. The Verilog RTL code is verified to work at 85 MHz in a Xilinx Virtex II FPGA. The FPGA implementation can process 30 HDTV frames (1280x720) per second

    A toolset for the analysis and optimization of motion estimation algorithms and processors

    Get PDF

    A flexible heterogeneous hardware/software solution for real-time high-definition H.264 motion estimation

    Get PDF
    International audienceThe MPEG-4 AVC/H.264 video compression standard introduces a high degree of motion estimation complexity. Quarter-pixel accuracy and variable block-size significantly enhance compression performances over previous standards, but increase computation requirements. Firstly, a DSP-based solution achieves real-time integer motion estimation. Nevertheless, fractional-pixel refinement is too computationally intensive to be efficiently processed on a software-based processor. Secondly, to address this restriction, a flexible and low complexity VLSI sub-pixel refinement coprocessor is designed. Thanks to an improved datapath, a high throughput is achieved with low logic resources. Finally, we propose a heterogeneous (DSP-FPGA) solution to handle real-time motion estimation with variable block-size and fractional-pixel accuracy for high-definition video. It combines efficiency and programmability. The flexibility offers complexity versus performance trade-offs. The system achieves motion estimation of 720p sequences at up to 60 frames per second

    State-of-the-Art and Trends in Scalable Video Compression with Wavelet Based Approaches

    Get PDF
    3noScalable Video Coding (SVC) differs form traditional single point approaches mainly because it allows to encode in a unique bit stream several working points corresponding to different quality, picture size and frame rate. This work describes the current state-of-the-art in SVC, focusing on wavelet based motion-compensated approaches (WSVC). It reviews individual components that have been designed to address the problem over the years and how such components are typically combined to achieve meaningful WSVC architectures. Coding schemes which mainly differ from the space-time order in which the wavelet transforms operate are here compared, discussing strengths and weaknesses of the resulting implementations. An evaluation of the achievable coding performances is provided considering the reference architectures studied and developed by ISO/MPEG in its exploration on WSVC. The paper also attempts to draw a list of major differences between wavelet based solutions and the SVC standard jointly targeted by ITU and ISO/MPEG. A major emphasis is devoted to a promising WSVC solution, named STP-tool, which presents architectural similarities with respect to the SVC standard. The paper ends drawing some evolution trends for WSVC systems and giving insights on video coding applications which could benefit by a wavelet based approach.partially_openpartially_openADAMI N; SIGNORONI. A; R. LEONARDIAdami, Nicola; Signoroni, Alberto; Leonardi, Riccard

    Long-Term Memory Motion-Compensated Prediction

    Get PDF
    Long-term memory motion-compensated prediction extends the spatial displacement vector utilized in block-based hybrid video coding by a variable time delay permitting the use of more frames than the previously decoded one for motion compensated prediction. The long-term memory covers several seconds of decoded frames at the encoder and decoder. The use of multiple frames for motion compensation in most cases provides significantly improved prediction gain. The variable time delay has to be transmitted as side information requiring an additional bit rate which may be prohibitive when the size of the long-term memory becomes too large. Therefore, we control the bit rate of the motion information by employing rate-constrained motion estimation. Simulation results are obtained by integrating long-term memory prediction into an H.263 codec. Reconstruction PSNR improvements up to 2 dB for the Foreman sequence and 1.5 dB for the Mother–Daughter sequence are demonstrated in comparison to the TMN-2.0 H.263 coder. The PSNR improvements correspond to bit-rate savings up to 34 and 30%, respectively. Mathematical inequalities are used to speed up motion estimation while achieving full prediction gain

    Optimization of the motion estimation for parallel embedded systems in the context of new video standards

    Get PDF
    15 pagesInternational audienceThe effciency of video compression methods mainly depends on the motion compensation stage, and the design of effcient motion estimation techniques is still an important issue. An highly accurate motion estimation can significantly reduce the bit-rate, but involves a high computational complexity. This is particularly true for new generations of video compression standards, MPEG AVC and HEVC, which involves techniques such as different reference frames, sub-pixel estimation, variable block sizes. In this context, the design of fast motion estimation solutions is necessary, and can concerned two linked aspects: a high quality algorithm and its effcient implementation. This paper summarizes our main contributions in this domain. In particular, we first present the HME (Hierarchical Motion Estimation) technique. It is based on a multi-level refinement process where the motion estimation vectors are first estimated on a sub-sampled image. The multi-levels decomposition provides robust predictions and is particularly suited for variable block sizes motion estimations. The HME method has been integrated in a AVC encoder, and we propose a parallel implementation of this technique, with the motion estimation at pixel level performed by a DSP processor, and the sub-pixel refinement realized in an FPGA. The second technique that we present is called HDS for Hierarchical Diamond Search. It combines the multi-level refinement of HME, with a fast search at pixel-accuracy inspired by the EPZS method. This paper also presents its parallel implementation onto a multi-DSP platform and the its use in the HEVC context

    Block-matching motion estimation algorithms for video processing and compression: A brief overview

    Get PDF
    Humanity created different methods for sharing information. One of the first forms of sharing information and knowledge were images. In the beginning, the process of sharing was relying on static appearances. With the invention of moving pictures by Eadweard Muybridge in the first part of 1870s, this exchange and sharing gained a new quality. Now it was possible to show and preserve motion too. Since that time, technology has changed rapidly. The latest discoveries and improvements from the point of view of technology use computer and IT technologies extensively. Today it is possible for everybody to create and record movies by themselves using affordable and convenient technological devices. Also the process of sharing evolved rapidly and become cheaper and cheaper. We are now able to record some movies and share them through the Internet or other carriers in real time or near real time. However, this also creates serious problems due to the huge volume of data to be sent through the data lines. Therefore, research has concentrated on methods to decrease the data volume without losing the quality. One way to do that is to create effective CODECs. A major drawback of moving pictures is the motion itself. CODECs have to minimize the size of videos without paying the price of quality losses but have also to reduce the computational complexity. Both of these requirements can be achieved with a solid knowledge of motion estimation among others. This paper gives a general overview and survey of some existing and important approaches without the claim of having a complete overview of the field

    Compressed-domain transcoding of H.264/AVC and SVC video streams

    Get PDF

    Motion compensation for image compression: pel-recursive motion estimation algorithm

    Get PDF
    In motion pictures there is a certain amount of redundancy between consecutive frames. These redundancies can be exploited by using interframe prediction techniques. To further enhance the efficiency of interframe prediction, motion estimation and compensation, various motion compensation techniques can be used. There are two distinct techniques for motion estimation block matching and pel-recursive block matching has been widely used as it produces a better signal-to-noise ratio or a lower bit rate for transmission than the pel-recursive method. In this thesis, various pel-recursive motion estimation techniques such as steepest descent gradient algorithm have been considered and simulated. [Continues.
    corecore