1,019 research outputs found

    Control of multi-terminal HVDC networks towards wind power integration: A review

    Get PDF
    © 2015 Elsevier Ltd. More interconnections among countries and synchronous areas are foreseen in order to fulfil the EU 2050 target on the renewable generation share. One proposal to accomplish this challenging objective is the development of the so-called European SuperGrid. Multi-terminal HVDC networks are emerging as the most promising technologies to develop such a concept. Moreover, multi-terminal HVDC grids are based on highly controllable devices, which may allow not only transmitting power, but also supporting the AC grids to ensure a secure and stable operation. This paper aims to present an overview of different control schemes for multi-terminal HVDC grids, including the control of the power converters and the controls for power sharing and the provision of ancillary services. This paper also analyses the proposed modifications of the existing control schemes to manage high participation shares of wind power generation in multi-terminal grids.Postprint (author's final draft

    Synchronous Machine Emulation of Vsc for Interconnection of Renewable Energy Sources through Hvdc Transmission

    Get PDF
    The majority of the energy demand over the past years has been fulfilled by centralized generating stations. However, with a continuously increasing energy demand, the integration of decentralized renewable energy sources (RES) into the power system network becomes inevitable even though these sources affect the stability of the grid due to their intermittency and use of various power converters. The transmission of power over long distances from RES is usually accomplished either by AC or DC transmission. High voltage DC transmission (HVDC) is preferred over high voltage AC transmission (HVAC) due to numerous and complex reasons, such as its lower investment cost for long transmission cables, lower losses, controllability, and limited short circuit currents. Several control methods for grid-connected voltage source converters (VSCs), such as power-angle and vector-current controls, are being adopted in RES interconnections. However, these methods face several issues when used for a weak grid interconnection. This thesis develops a control strategy for a VSC–HVDC transmission system by referring to the synchronverter concept. In the proposed method, the sending-end rectifier controls emulate a synchronous motor (SM), whereas the receiving end inverter emulates a synchronous generator (SG) to transmit power from one grid to another. The two converters connected by a DC line provide a synchronverter HVDC (SHVDC) link. Given the high demand for sustainable energy, integrating RES—which can be extended to wind-based resources—into the long-haul HVDC link becomes essential. Therefore, in this thesis, a windfarm with a type 4 permanent magnet SG is integrated into the HVDC link through a rectifier. Depending on the wind speed, the proposed control strategy automatically shares and manages the wind generator power on the DC side by using a battery energy storage system (BESS) connected to the HVDC link to stabilize the power fluctuations generated by the intermittency of the wind farm. The performance of the synchronverter-based HVDC transmission was verified by using a MATLAB Simulink model. Results show that the controller can effectively control the power flow from one grid to another and that the effect of wind fluctuation on the grid can be mitigated by introducing a BESS at the DC link. Therefore, by properly controlling the SHVDC, BESS, and RES connected to the HVDC system, the power from remote RES can be connected to a weak AC grid in a stable manner

    Offshore wind power integration to support weak grid voltage for industrial loads using VSC-HVDC transmission system

    Get PDF
    This paper investigates the integration of the offshore wind power plant into the grid using voltage source converter high-voltage direct current (VSC-HVDC). The paper proposes both offshore and onshore converter stations control to support voltage variation in grid. Heavy industrial loads result in a weak grid. In this paper, the effect on industrial loads by the grid strength is shown. Then the paper proposes a solution for the grid voltage support for industrial loads connected to weak grids. The results showed that the increase of grid voltage from 0.7 pu to 1 pu at full load condition that provides a continuous operation without any interruption. The system was modelled using MATLAB/Simulink package

    Using of HVDC Technology in Super Grids

    Get PDF
    This paper describes the HVDC system, its organization, as well as advantages over the AC system. Implementation of this system will help to make Europe sustainable energy independent which will require a renewable generation portfolio where much of this portfolio will be fueled by wind and will be developed offshore as it is presented in this paper. To deliver this energy to European consumers will require the development of a high capacity transmission system the so called Supergrid, which will be capable of delivering this energy to Europe\u27s load centers. In this paper also is presented, a DC connection of the wind farm with a grid on the mainland as well as the importance of building a Supergrid

    Electricity Infrastructure in Asian Region and Energy Security Problems

    Get PDF

    Subsea DC collection grid with high power security for offshore renewables

    Get PDF
    This work was supported by the Engineering and Physical Sciences Research Council [grant number EP/K006428/1]; and the European Regional Development Fund [grant number LUPS/ERDF/2010/4/1/0164].Peer reviewedPostprin

    The Role of Power Electronics in Modern Energy System Integration

    Get PDF

    Operation and control strategy of coupled microgrid clusters

    Get PDF
    A standalone remote area microgrid may frequently experience overloading due to lack of sufficient power generation or excessive renewable-based generation that can cause unacceptable voltage and frequency deviation. This can lead the microgrid to operate with less resiliency and reliability. Such problems are conventionally alleviated by load-shedding or renewable curtailment. Alternatively, autonomously operating microgrids in a geographical area can be provisionally connected to each other to facilitate power exchange for addressing the problems of overloading or overgeneration. The power exchange link among the microgrids can be of different types such as a three-phase ac, a single-phase ac, or a dc-link. Power electronic converters are required to interconnect such power exchange networks to the three-phase ac microgrids and control the power-sharing amongst them. Such arrangement is also essential to interconnect microgrid clusters to each other with proper isolation while maintaining autonomy if they are operating in different standards. In this thesis, the topologies, and structures of various forms of power exchange links are investigated and appropriate operation and control frameworks are established under which power exchange can take place properly. A decentralised control mechanism is employed to facilitate power-sharing without any data communication. The dynamic performance of the control mechanism for all the topologies is illustrated through simulation studies in PSIM® while the stability and robustness of the operation are evaluated using numerical studies in MATLAB®
    corecore