190 research outputs found

    A New Scheme of Group-based AKA for Machine Type Communication over LTE Networks

    Get PDF
    Machine Type Communication (MTC) is considered as one of the most important approaches to the future of mobile communication has attracted more and more attention. To reach the safety of MTC, applications in networks must meet the low power consumption requirements of devices and mass transmission device. When a large number of MTC devices get connected to the network, each MTC device must implement an independent access authentication process according to the 3GPP standard, which will cause serious traffic congestion in the Long Term Evolution (LTE) network. In this article, we propose a new group access authentication scheme, by which a huge number of MTC devices can be simultaneously authenticated by the network and establish an independent session key with the network respectively. Experimental results show that the proposed scheme can achieve robust security and avoid signaling overload on LTE network

    Secret sharing-based authentication and key agreement protocol for machine-type communications

    Full text link
    [EN] One of the main challenges for the development of the Internet of Things is the authentication of large numbers of devices/sensors, commonly served by massive machine-type communications, which jointly with long-term evolution has been considered one of the main foundations for the continued growth of Internet of Things connectivity and an important issue to be treated in the development of 5G networks. This article describes some protocols for the group-based authentication of devices/sensors in Internet of Things and presents a new group authentication protocol based on Shamir's secret and Lagrange interpolation formula. The new protocol protects privacy, avoids unauthorized access to information, and assists in the prevention of attacks, as replay, distributed denial of service, and man-in-the-middle. A security analysis and comparisons among the 3GPP evolved packet system authentication and key agreement standard protocol and other recent group authentication protocols were performed toward proving the efficiency of the proposed protocol. The comparisons regard security properties and computational and communication costs. The safety of the protocol was formally verified through simulations conducted by automated validation of internet security protocols and applications.Lopes, APG.; Hilgert, LO.; Gondim, PRL.; Lloret, J. (2019). Secret sharing-based authentication and key agreement protocol for machine-type communications. International Journal of Distributed Sensor Networks (Online). 15(4):1-21. https://doi.org/10.1177/1550147719841003S12115

    A Novel Cross-Layer Authentication Protocol for the Internet of Things

    Full text link
    An innovative cross-layer authentication protocol that integrates cryptography-based authentication and physical layer authentication (PLA) is proposed for massive cellular Internet of things (IoT) systems. Due to dramatic increases in the number of cellular IoT devices, a centralized authentication architecture in which a mobility management entity in core networks administers authentication of massive numbers of IoT devices may cause network congestion with large signaling overhead. Thus, a distributed authentication architecture in which a base station in radio access networks authenticates IoT devices locally is presented. In addition, a cross-layer authentication protocol is designed with a novel integration strategy under the distributed authentication architecture, where PLA, which employs physical features for authentication, is used as preemptive authentication in the proposed protocol. Theoretical analysis and numerical simulations were performed to analyze the trade-off between authentication performance and overhead in the proposed authentication method compared with existing authentication protocols. The results demonstrate that the proposed protocol outperforms conventional authentication and key agreement protocols in terms of overhead and computational complexity while guaranteeing low authentication error probability

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    PROCESS FOR BREAKING DOWN THE LTE SIGNAL TO EXTRACT KEY INFORMATION

    Get PDF
    The increasingly important role of Long Term Evolution (LTE) has increased security concerns among the service providers and end users and made security of the network even more indispensable. The main thrust of this thesis is to investigate if the LTE signal can be broken down in a methodical way to obtain information that would otherwise be private; e.g., the Global Positioning System (GPS) location of the user equipment/base station or identity (ID) of the user. The study made use of signal simulators and software to analyze the LTE signal to develop a method to remove noise, breakdown the LTE signal and extract desired information. From the simulation results, it was possible to extract key information in the downlink like the Downlink Control Information (DCI), Cell-Radio Network Temporary Identifier (C-RNTI) and physical Cell Identity (Cell-ID). This information can be modified to cause service disruptions in the network within a reasonable amount of time and with modest computing resources.Defence Science and Technology Agency, SingaporeApproved for public release; distribution is unlimited

    SECURITY MEASUREMENT FOR LTE/SAE NETWORK DURING SINGLE RADIO VOICE CALL CONTINUITY (SRVCC).

    Get PDF
    Voice has significant place in mobile communication networks. Though data applications have extensively gained in importance over the years but voice is still a major source of revenue for mobile operators. It is obvious that voice will remain an important application even in the era of Long Term Evolution (LTE). Basically LTE is an all-IP data-only transport technology using packet switching. Therefore, it introduces challenges to satisfy quality of service expectations for circuit-switched mobile telephony and SMS for LTE capable smartphones, while being served on the LTE network. Since 2013, mobile operators have been busy deploying Voice Over LTE (VoLTE). They are relying on a VoLTE technology called Single Radio Voice Call Continuity (SRVCC) for seamless handover between packet-switch domain to circuit-switch domain or vice versa. The aim of thesis is to review and identify the security measurement during SRVCC and verify test data for ciphering and integrity algorithm.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format
    corecore