4,272 research outputs found

    On the Security of a Group Signature Scheme with Strong Separability

    Get PDF
    A group signature scheme allows a group member of a given group to sign messages on behalf of the group in an anonymous and unlinkable fashion. In case of a dispute, however, a designated group manager can reveal the signer of a valid group signature. Many applications of group signatures require that the group manager can be split into a membership manager and a revocation manager. Such a group signature scheme with strong separability was proposed in paper [1]. Unfortunately, the scheme is insecure which has been shown in [2][3][4]. In this paper we show that the scheme is untraceable by a simple and direct attack. Besides, we show its universal forgeability by a general attack which only needs to choose five random numbers. We minutely explain the technique to shun the challenge in the scheme

    two attacks on xia-you Group Signature

    Get PDF
    Group signature is very important primitive in cryptography. A group signature scheme allows any group member to sign on behalf of the group in an anonymous and unlinkable fashion .In case of dispute, group manager can reveal the identity of the signer. Recently, S.Xia and J.You proposed a group signature scheme based on identity with strong separability in which the revocation manager can work without the involvement of the membership manger. In this paper, we analyze the security of Xia-You group signature and indicate that two or more group members can collude to construct a valid signature and any group member can forge a valid membership certification

    Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime

    Full text link
    The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross phase modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schr\"odinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on non-linear interaction via double-EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:5050:50 beam splitter and two photodetectors. In order to show the entanglement of a generated entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section

    Efficient fiber coupling of down-conversion photon pairs

    Full text link
    We develop and apply an effective analytic theory of a non-collinear, broadband type-I parametric down-conversion to study a coupling efficiency of the generated photon pairs into single mode optical fibers. We derive conditions necessary for highly efficient coupling for single and double type-I crystal producing polarization entangled states of light. We compare the obtained approximate analytic expressions with the exact numerical solutions and discuss the results for a case of BBO crystals.Comment: 15 pages, 4 figure

    A survey on group signature schemes

    Get PDF
    Group Signature, extension of digital signature, allows members of a group to sign messages on behalf of the group, such that the resulting signature does not reveal the identity of the signer. Any client can verify the authenticity of the document by using the public key parameters of the group. In case of dispute, only a designated group manager, because of his special property, is able to open signatures, and thus reveal the signer’s identity. Its applications are widespread, especially in e-commerce such as e-cash, e-voting and e-auction. This thesis incorporates the detailed study of various group signature schemes, their cryptographic concepts and the main contributions in this field. We implemented a popular group signature scheme based upon elliptic curve cryptosystems. Moreover, the group signature is dynamic i.e. remains valid, if some members leave the group or some new members join the group. Full traceability feature is also included in the implemented scheme. For enhanced security the the scheme implements distributed roles of the group manager. We also analysed various security features, formal models, challenges and cryptanalysis of some significant contributions in this area
    corecore