9,060 research outputs found

    Adaptive modality selection algorithm in robot-assisted cognitive training

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Interaction of socially assistive robots with users is based on social cues coming from different interaction modalities, such as speech or gestures. However, using all modalities at all times may be inefficient as it can overload the user with redundant information and increase the task completion time. Additionally, users may favor certain modalities over the other as a result of their disability or personal preference. In this paper, we propose an Adaptive Modality Selection (AMS) algorithm that chooses modalities depending on the state of the user and the environment, as well as user preferences. The variables that describe the environment and the user state are defined as resources, and we posit that modalities are successful if certain resources possess specific values during their use. Besides the resources, the proposed algorithm takes into account user preferences which it learns while interacting with users. We tested our algorithm in simulations, and we implemented it on a robotic system that provides cognitive training, specifically Sequential memory exercises. Experimental results show that it is possible to use only a subset of available modalities without compromising the interaction. Moreover, we see a trend for users to perform better when interacting with a system with implemented AMS algorithm.Peer ReviewedPostprint (author's final draft

    Context-aware user modeling strategies for journey plan recommendation

    Get PDF
    Popular journey planning systems, like Google Maps or Yahoo! Maps, usually ignore user’s preferences and context. This paper shows how we applied context-aware recommendation technologies in an existing journey planning mobile application to provide personalized and context-dependent recommendations to users. We describe two different strategies for context-aware user modeling in the journey planning domain. We present an extensive performance comparison of the proposed strategies by conducting a user-centric study in addition to a traditional offline evaluation methodPeer ReviewedPostprint (published version
    • …
    corecore