111 research outputs found

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Applicability of Industry 4.0 Technologies in the Reverse Logistics: A Circular Economy Approach Based on COmprehensive Distance Based RAnking (COBRA) Method

    Get PDF
    The logistics sector plays one of the most important roles in the supply chain with the aim of providing a fast, flexible, safe, economical, efficient, and environmentally acceptable performance of freight transport flows. In addition, the popularization of the concept of a circular economy (CE) used to retain goods, components, and materials at their highest usability and value at all times, illustrates the importance of the adequate performance of reverse logistics (RL) processes. However, traditional RL is unable to cope with the requirements of modern supply chains and requires the application of Industry 4.0 technologies, which would make it more efficient. The main aim of this study was to evaluate the applicability of various Industry 4.0 technologies in the RL sector in order to point out the most applicable ones. To solve the defined problem, a novel multi-criteria decision making (MCDM) model was defined by combining the best-worst method (BWM) to obtain the criteria weights, and the newly developed comprehensive distance-based ranking (COBRA) method to rank the technologies. Another aim of the study was to validate the newly established method. The results indicated that the most applicable technologies were the Internet of Things, cloud computing, and electronic-mobile marketplaces. These technologies will have a significant impact on the development of RL and the establishment of CE systems, thus bringing about all the related positive effects

    An integrated grey-based multi-criteria decision-making approach for supplier evaluation and selection in the oil and gas industry

    Get PDF
    Purpose The oil and gas industry is a crucial economic sector for both developed and developing economies. Delays in extraction and refining of these resources would adversely affect industrial players, including that of the host countries. Supplier selection is one of the most important decisions taken by managers of this industry that affect their supply chain operations. However, determining suitable suppliers to work with has become a phenomenon faced by these managers and their organizations. Furthermore, identifying relevant, critical and important criteria needed to guide these managers and their organizations for supplier selection decisions has become even more complicated due to various criteria that need to be taken into consideration. With limited works in the current literature of supplier selection in the oil and gas industry having major methodological drawbacks, the purpose of this paper is to develop an integrated approach for supplier selection in the oil and gas industry. Design/methodology/approach To address this problem, this paper proposes a new uncertain decision framework. A grey-Delphi approach is first applied to aid in the evaluation and refinement of these various available criteria to obtain the most important and relevant criteria for the oil and gas industry. The grey systems theoretic concept is adopted to address the subjectivity and uncertainty in human judgments. The grey-Shannon entropy approach is used to determine the criteria weights, and finally, the grey-EDAS (evaluation based on distance from average solution) method is utilized for determining the ranking of the suppliers. Findings To exemplify the applicability and robustness of the proposed approach, this study uses the oil and gas industry of Iran as a case in point. From the literature review, 21 criteria were established and using the grey-Delphi approach, 16 were finally considered. The four top-ranked criteria, using grey-Shannon entropy, include warranty level and experience time, relationship closeness, supplier’s technical level and risks which are considered as the most critical and influential criteria for supplier evaluation in the Iranian oil and gas industry. The ranking of the suppliers is obtained, and the best and worst suppliers are also identified. Sensitivity analysis indicates that the results using the proposed methodology are robust. Research limitations/implications The proposed approach would assist supply chain practicing managers, including purchasing managers, procurement managers and supply chain managers in the oil and gas and other industries, to effectively select suitable suppliers for cooperation. It can also be used for other multi-criteria decision-making (MCDM) applications. Future works on applying other MCDM methods and comparing them with the results of this study can be addressed. Finally, broader and more empirical works are required in the oil and gas industry. Originality/value This study is among the first few studies of supplier selection in the oil and gas industry from an emerging economy perspective and sets the stage for future research. The proposed integrated grey-based MCDM approach provides robust results in supplier evaluation and can be used for future domain applications

    A comprehensive review of hybrid game theory techniques and multi-criteria decision-making methods

    Get PDF
    More studies trend to hybrid the game theory technique with the multi-criteria decision-making (MCDM) method to aid real-life problems. This paper provides a comprehensive review of the hybrid game theory technique and MCDM method. The fundamentals of game theory concepts and models are explained to make game theory principles clear to the readers. Moreover, the definitions and models are elaborated and classified to the static game, dynamic game, cooperative game and evolutionary game. Therefore, the hybrid game theory technique and MCDM method are reviewed and numerous applications studied from the past works of literature are highlighted. The result of the previous studies shows that the fundamental elements for both frameworks were studied in various ways with most of the past studies tend to integrate the static game with AHP and TOPSIS methods. Also, the integration of game theory techniques and MCDM methods was studied in various applications such as politics, economy, supply chain, engineering, water management problem, allocation problem and telecommunication network selection. The main contribution of the recent studies of employment between game theory technique and MCDM method are analyzed and discussed in detail which includes static and dynamic games in the non-cooperative game, cooperative game, both non-cooperative and cooperative games and evolutionary gam

    Analysis of Decision Support Systems of Industrial Relevance: Application Potential of Fuzzy and Grey Set Theories

    Get PDF
    The present work articulates few case empirical studies on decision making in industrial context. Development of variety of Decision Support System (DSS) under uncertainty and vague information is attempted herein. The study emphases on five important decision making domains where effective decision making may surely enhance overall performance of the organization. The focused territories of this work are i) robot selection, ii) g-resilient supplier selection, iii) third party logistics (3PL) service provider selection, iv) assessment of supply chain’s g-resilient index and v) risk assessment in e-commerce exercises. Firstly, decision support systems in relation to robot selection are conceptualized through adaptation to fuzzy set theory in integration with TODIM and PROMETHEE approach, Grey set theory is also found useful in this regard; and is combined with TODIM approach to identify the best robot alternative. In this work, an attempt is also made to tackle subjective (qualitative) and objective (quantitative) evaluation information simultaneously, towards effective decision making. Supplier selection is a key strategic concern for the large-scale organizations. In view of this, a novel decision support framework is proposed to address g-resilient (green and resilient) supplier selection issues. Green capability of suppliers’ ensures the pollution free operation; while, resiliency deals with unexpected system disruptions. A comparative analysis of the results is also carried out by applying well-known decision making approaches like Fuzzy- TOPSIS and Fuzzy-VIKOR. In relation to 3PL service provider selection, this dissertation proposes a novel ‘Dominance- Based’ model in combination with grey set theory to deal with 3PL provider selection, considering linguistic preferences of the Decision-Makers (DMs). An empirical case study is articulated to demonstrate application potential of the proposed model. The results, obtained thereof, have been compared to that of grey-TOPSIS approach. Another part of this dissertation is to provide an integrated framework in order to assess gresilient (ecosilient) performance of the supply chain of a case automotive company. The overall g-resilient supply chain performance is determined by computing a unique ecosilient (g-resilient) index. The concepts of Fuzzy Performance Importance Index (FPII) along with Degree of Similarity (DOS) (obtained from fuzzy set theory) are applied to rank different gresilient criteria in accordance to their current status of performance. The study is further extended to analyze, and thereby, to mitigate various risk factors (risk sources) involved in e-commerce exercises. A total forty eight major e-commerce risks are recognized and evaluated in a decision making perspective by utilizing the knowledge acquired from the fuzzy set theory. Risk is evaluated as a product of two risk quantifying parameters viz. (i) Likelihood of occurrence and, (ii) Impact. Aforesaid two risk quantifying parameters are assessed in a subjective manner (linguistic human judgment), rather than exploring probabilistic approach of risk analysis. The ‘crisp risk extent’ corresponding to various risk factors are figured out through the proposed fuzzy risk analysis approach. The risk factor possessing high ‘crisp risk extent’ score is said be more critical for the current problem context (toward e-commerce success). Risks are now categorized into different levels of severity (adverse consequences) (i.e. negligible, minor, marginal, critical and catastrophic). Amongst forty eight risk sources, top five risk sources which are supposed to adversely affect the company’s e-commerce performance are recognized through such categorization. The overall risk extent is determined by aggregating individual risks (under ‘critical’ level of severity) using Fuzzy Inference System (FIS). Interpretive Structural Modeling (ISM) is then used to obtain structural relationship amongst aforementioned five risk sources. An appropriate action requirement plan is also suggested, to control and minimize risks associated with e-commerce exercises

    Uncertain Multi-Criteria Optimization Problems

    Get PDF
    Most real-world search and optimization problems naturally involve multiple criteria as objectives. Generally, symmetry, asymmetry, and anti-symmetry are basic characteristics of binary relationships used when modeling optimization problems. Moreover, the notion of symmetry has appeared in many articles about uncertainty theories that are employed in multi-criteria problems. Different solutions may produce trade-offs (conflicting scenarios) among different objectives. A better solution with respect to one objective may compromise other objectives. There are various factors that need to be considered to address the problems in multidisciplinary research, which is critical for the overall sustainability of human development and activity. In this regard, in recent decades, decision-making theory has been the subject of intense research activities due to its wide applications in different areas. The decision-making theory approach has become an important means to provide real-time solutions to uncertainty problems. Theories such as probability theory, fuzzy set theory, type-2 fuzzy set theory, rough set, and uncertainty theory, available in the existing literature, deal with such uncertainties. Nevertheless, the uncertain multi-criteria characteristics in such problems have not yet been explored in depth, and there is much left to be achieved in this direction. Hence, different mathematical models of real-life multi-criteria optimization problems can be developed in various uncertain frameworks with special emphasis on optimization problems
    corecore