3,334 research outputs found

    DIAL with heterodyne detection including speckle noise: Aircraft/shuttle measurements of O3, H2O, and NH3 with pulsed tunable CO2 lasers

    Get PDF
    Atmospheric trace constituent measurements with higher vertical resolution than attainable with passive radiometers are discussed. Infrared differential absorption lidar (DIAL), which depends on Mie scattering from aerosols, has special advantages for tropospheric and lower stratospheric applications and has great potential importance for measurements from shuttle and aircraft. Differential absorption lidar data reduction involves comparing large amplitude signals which have small differences. The accuracy of the trace constituent concentration inferred from DIAL measurements depends strongly on the errors in determining the amplitude of the signals. Thus, the commonly used SNR expression (signal divided by noise in the absence of signal) is not adequate to describe DIAL measurement accuracy and must be replaced by an expression which includes the random coherent (speckle) noise within the signal. A comprehensive DIAL computer algorithm is modified to include heterodyne detection and speckle noise. Examples for monitoring vertical distributions of O3, H2O, and NH3 using a ground-, aircraft-, or shuttle-based pulsed tunable CO2 laser DIAL system are given

    Progress on Development of an Airborne Two-Micron IPDA Lidar for Water Vapor and Carbon Dioxide Column Measurements

    Get PDF
    An airborne 2 micron triple-pulse integrated path differential absorption (IPDA) lidar is currently under development at NASA Langley Research Center (LaRC). This lidar targets both atmospheric carbon dioxide (CO2) and water vapor (H2O) column measurements, simultaneously. Advancements in the development of this IPDA lidar are presented in this paper. Updates on advanced two-micron triple-pulse high-energy laser transmitter will be given including packaging and lidar integration status. In addition, receiver development updates will also be presented. This includes a state-of-the-art detection system integrated at NASA Goddard Space Flight Center. This detection system is based on a newly developed HgCdTe (MCT) electron-initiated avalanche photodiode (e-APD) array. Future plan for IPDA lidar system for ground integration, testing and flight validation will be discussed

    Advances in High Energy Solid-State Pulsed 2-Micron Lidar Development for Ground and Airborne Wind, Water Vapor and CO2 Measurements

    Get PDF
    NASA Langley Research Center has a long history of developing 2-micron lasers. From fundamental spectroscopy research, theoretical prediction of new materials, laser demonstration and engineering of lidar systems, it has been a very successful program spanning around two decades. Successful development of 2-micron lasers has led to development of a state-of-the-art compact lidar transceiver for a pulsed coherent Doppler lidar system for wind measurement with an unprecedented laser pulse energy of 250 millijoules in a rugged package. This high pulse energy is produced by a Ho:Tm:LuLiF laser with an optical amplifier. While the lidar is meant for use as an airborne instrument, ground-based tests were carried out to characterize performance of the lidar. Atmospheric measurements will be presented, showing the lidar's capability for wind measurement in the atmospheric boundary layer and free troposphere. Lidar wind measurements are compared to a balloon sonde, showing good agreement between the two sensors. Similar architecture has been used to develop a high energy, Ho:Tm:YLF double-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument based on direct detection technique that provides atmospheric column CO2 measurements. This instrument has been successfully used to measure atmospheric CO2 column density initially from a ground mobile lidar trailer, and then it was integrated on B-200 plane and 20 hours of flight measurement were made from an altitude ranging 1500 meters to 8000 meters. These measurements were compared to in-situ measurements and National Oceanic and Atmospheric Administration (NOAA) airborne flask measurement to derive the dry mixing ratio of the column CO2 by reflecting the signal by various reflecting surfaces such as land, vegetation, ocean surface, snow and sand. The lidar measurements when compared showed a very agreement with in-situ and airborne flask measurement. NASA Langley Research Center is currently developing a triple-pulsed 2-micron Integrated Differential Absorption Lidar (IPDA) instrument for simultaneous measurement of water vapor and carbon-dioxide column density measurement from an air-borne platform. This presentation will give an overview of the 2 decades of 2-micron coherent and direction detection of laser/lidar development at NASA Langley Research Center and will present the ground and airborne wind and column CO2 measurement intercomparison with in-situ, balloon and flask measurements

    Double-Pulsed 2-Micrometer Lidar Validation for Atmospheric CO2 Measurements

    Get PDF
    A double-pulsed, 2-micron Integrated Path Differential Absorption (IPDA) lidar instrument for atmospheric carbon dioxide (CO2) measurements is successfully developed at NASA Langley Research Center (LaRC). Based on direct detection technique, the instrument can be operated on ground or onboard a small aircraft. Key features of this compact, rugged and reliable IPDA lidar includes high transmitted laser energy, wavelength tuning, switching and locking, and sensitive detection. As a proof of concept, the IPDA ground and airborne CO2 measurement and validation will be presented. IPDA lidar CO2 measurements ground validation were conducted at NASA LaRC using hard targets and a calibrated in-situ sensor. Airborne validation, conducted onboard the NASA B-200 aircraft, included CO2 plum detection from power stations incinerators, comparison to in-flight CO2 in-situ sensor and comparison to air sampling at different altitude conducted by NOAA at the same site. Airborne measurements, spanning for 20 hours, were obtained from different target conditions. Ground targets included soil, vegetation, sand, snow and ocean. In addition, cloud slicing was examined over the ocean. These flight validations were conducted at different altitudes, up to 7 km, with different wavelength controlled weighing functions. CO2 measurement results agree with modeling conducted through the different sensors, as will be discussed

    Airborne Measurements of Atmospheric Pressure made Using an IPDA Lidar Operating in the Oxygen A-Band

    Get PDF
    We report airborne measurements of atmospheric pressure made using an integrated path differential absorption (IPDA) lidar that operates in the oxygen A-band near 765 nm. Remote measurements of atmospheric temperature and pressure are needed for NASA s Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission to measure atmospheric CO2. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve our predictions of climate change. The goal of ASCENDS is to determine the CO2 dry mixing ratio with lidar measurements from space at a level of ~1 ppm. Analysis to date shows that with current weather models, measurements of both the CO2 column density and the column density of dry air are needed. Since O2 is a stable molecule that uniformly mixed in the atmosphere, measuring O2 absorption in the atmosphere can be used to infer the dry air density. We have developed an airborne (IPDA) lidar for Oxygen, with support from the NASA ESTO IIP program. Our lidar uses DFB-based seed laser diodes, a pulsed modulator, a fiber laser amplifier, and a non-linear crystal to generate wavelength tunable 765 nm laser pulses with a few uJ/pulse energy. The laser pulse rate is 10 KHz, and average transmitted laser power is ~20 mW. Our lidar steps laser pulses across a selected line O2 doublet near 764.7 nm in the Oxygen A-band. The direct detection lidar receiver uses a 20 cm diameter telescope, a Si APD detector in Geiger mode, and a multi-channel scalar to detect and record the time resolved laser backscatter in 40 separate wavelength channels. Subsequent analysis is used to estimate the transmission line shape of the doublet for the laser pulses reflected from the ground. Ground based data analysis allows averaging from 1 to 60 seconds to increase SNR in the transmission line shape of the doublet. Our retrieval algorithm fits the expected O2 lineshapes against the measurements and determines the atmospheric pressure by minimizing the error between the observations and model. We first demonstrated our airborne lidar during flights during summer 2010. We made several improvements and made measurements during the Ascends flights during July 2011. More information about the technique, lidar instrument, airborne measurements, and pressure estimates will be described in the presentation

    A theoretical/experimental program to develop active optical pollution sensors, part 2

    Get PDF
    Progress is reported on experimental investigations of Lidar and the application of Lidar to environmental and atmospheric science. Specifically the following programs are considered: calibration and application of the LaRC 48-inch Lidar; efficient and certain detection of SO2 and other gases in the calibration tank using the Raman Stack Monitor Lidar; the potential of Lidar remote sensing from the space shuttle; and the planning and mounting of efforts to realize the promise of backscatter differential absorption Lidar

    Frequency Control of Multi-Pulse 2-micron Laser Transmitter for Atmospheric Carbon Dioxide Measurement

    Get PDF
    Laser sources with highly stabilized emission wavelength is of paramount importance for a long term atmospheric carbon dioxide (CO2) measurement from a space platform. Integrated Path Differential Absorption (IPDA) lidar is a promising instrument for such a task. The design of a laser transmitter, with emphasis on the method used to control and select several wavelengths, is presented. This multi-pulsed, injection seeded, 2-m transmitter uses a Ho:Tm:YLF laser crystal which has matching emission to the absorption of CO2 in the R30 spectroscopic area. The injection seeded laser produces triple single longitudinal mode transform limited line width pulses with a total of 80 mJ at a repetition rate of 50 Hz

    A novel satellite mission concept for upper air water vapour, aerosol and cloud observations using integrated path differential absorption LiDAR limb sounding

    Get PDF
    We propose a new satellite mission to deliver high quality measurements of upper air water vapour. The concept centres around a LiDAR in limb sounding by occultation geometry, designed to operate as a very long path system for differential absorption measurements. We present a preliminary performance analysis with a system sized to send 75 mJ pulses at 25 Hz at four wavelengths close to 935 nm, to up to 5 microsatellites in a counter-rotating orbit, carrying retroreflectors characterized by a reflected beam divergence of roughly twice the emitted laser beam divergence of 15 µrad. This provides water vapour profiles with a vertical sampling of 110 m; preliminary calculations suggest that the system could detect concentrations of less than 5 ppm. A secondary payload of a fairly conventional medium resolution multispectral radiometer allows wide-swath cloud and aerosol imaging. The total weight and power of the system are estimated at 3 tons and 2,700 W respectively. This novel concept presents significant challenges, including the performance of the lasers in space, the tracking between the main spacecraft and the retroreflectors, the refractive effects of turbulence, and the design of the telescopes to achieve a high signal-to-noise ratio for the high precision measurements. The mission concept was conceived at the Alpbach Summer School 2010

    CO2 lidar system for atmospheric studies

    Get PDF
    A lidar facility using a TEA CO2 laser source is being developed at the ENEA Laboratories for Atmospheric Studies. The different subsystems and the proposed experimental activities are described

    LIDAR sensing of the atmosphere: application to CO2 detection

    Get PDF
    Znalost o prostorovém rozložení, koncentraci a zdrojích CO2 v atmosféře je klíčová k pochopení přírodního cyklu oxidu uhličitého, k předpovědi vývoje a vlivu CO2 na klimatické změny. Tato práce se zabývá problematikou optického dálkového snímání za použití LIDAR (Light Detection and Ranging) systému. Obsahuje potřebné teoretické znalosti o LIDAR systému, použití a principy. Z mnoha aplikací využívající LIDAR je v této práci nastíněno provedení a měření pomocí DIAL (Differential Absorption LIDAR) systému určeného k určení koncentrace CO2 v atmosféře, tak i využití dalších aktivních či pasivních způsobů snímání CO2.Knowledge of the spatial distribution, concentration and sources of atmospheric CO2 is a key factor for understanding of the carbon natural cycle, predicting evolution and the impact of carbon dioxide on climate changes. This work deals with optical remote sensing using LIDAR (Light Detection and Ranging). It contains necessary theoretical background of LIDAR system, the use and principles. LIDAR is used in many applications. The application, realization and measurement of concentration CO2 in the atmosphere with DIAL (Differential Absorption LIDAR) are outlined and also the use of other active and passive sensing techniques of CO2.
    corecore