71 research outputs found

    A shape memory alloy-based biomimetic robotic hand : design, modelling and experimental evaluation

    Get PDF
    Every year more the 400,000 people are subject to an upper limb amputation. Projections foresee that this number may double by the 2050. Infections, trauma, cancer, or complications that arise in blood vessels represent the main causes for amputations. The access to prosthetic care is worldwide extremely limited. This is mainly due to the high cost both of commercially available prostheses and of the rehabilitation procedure which every prostheses user has to endure. Aside from high costs, commercially available hand prostheses have faced high rejection rates, mainly due to the their heavy weight, noisy operation and also to the unnatural feel of the fingers. To overcome these limitations, new materials, such as Shape Memory Alloys (SMAs), have been considered as potential candidate actuators for these kind of devices. In order to provide a contribution in the development of performant and easily affordable hand prostheses, the development of a novel and cost-effective five-fingered hand prototype actuated by Shape Memory Alloy (SMA) wires is presented in this work. The dissertation starts with the description of a first generation of a SMA actuated finger. Structure assemblage and performances in term of force, motion and reactiveness are investigated to highlight advantages and disadvantages of the prototype. In order to improve the achievable performances, a second generation of SMA actuated finger having soft features is introduced. Its structure, a five-fingered hand prosthesis having intrinsically elastic fingers, capable to grasp several types of objects with a considerable force, and an entirely 3D printed structure is then presented. Comparing this prototype with the most important prostheses developed so far, relevant advantages especially in term of noiseless actuation, cost, weight, responsiveness and force can be highlighted. A finite element based framework is then developed, to enable additional structure optimization and further improve the SMA finger performances. On the same time, a concentrated parameters physics-based model is formulated to allow, in the future, an easier control of the device, characterized by strong nonlinearities mainly due to the Shape Memory alloy hysteretic behavior.Jedes Jahr werden weltweit bei mehr als 400.000 Menschen Amputationen der oberen Gliedmaßen durchgeführt. Prognosen gehen davon aus, dass sich diese Zahl bis zum Jahr 2050 verdoppeln wird. Hauptursachen der Amputationen sind Infektionen, Unfälle, Krebs oder Durchblutungsstörungen. Der Zugang zu prothetischer Versorgung ist besonders in den Entwicklungsländern stark eingeschränkt. Dies liegt vor allem an den hohen Kosten sowohl der im Handel erhältlichen Prothesen als auch des Rehabilitationsprozesses, den jeder Prothesenträger durchlaufen muss. Neben den hohen Kosten haben kommerziell erhältliche Handprothesen aufgrund ihres hohen Gewichts, des lauten Betriebes und auch des unnatürlichen Gefühls hohe Ablehnungsraten. Um diese Einschränkungen zu überwinden, wurden neue Materialien, wie z.B. Formgedächtnislegierungen (SMAs), als potenzielle Materialien für den Antrieb von Prothesen untersucht . Um einen Beitrag zur Entwicklung von leistungsfähigen und erschwinglichen Handprothesen zu leisten, wird in dieser Arbeit die Entwicklung eines neuartigen und kostengünstigen Fünf-Finger-Handprototyps vorgestellt, der durch Drähte aus Formgedächtnislegierungen aktiviert wird. Die Doktorarbeit beginnt mit der Beschreibung der ersten Generation eines SMA-aktivierten Fingers. Zuerst wird der Aufbau und das Wirkungsprinzip des SMA Fingers erläutert und die Leistungs- und Bewegungsfähigkeit des Systems untersucht sowie Vor- und Nachteile des Prototyps dargestellt. Anschließend, um die erreichbare Leistungsfähigkeit zu verbessern, wird eine zweite Generation von SMA-gesteuerten Fingern vorgestellt, die eine vollständig in 3D gedruckte Struktur aufweisen. Diese Fünffinger-Handprothese mit inhärent elastischen Fingern ermöglicht nicht nur das Greifen unterschiedlich geformter Objekte sondern auch das Heben und Halten schwerer Gegenstände. Dieser neuartige Prototyp wird mit den wichtigsten bisher entwickelten Prothesen verglichen und die relevanten Vorteile insbesondere in Bezug auf geräuschlose Ansteuerung, Kosten, Gewicht, Reaktionszeit und Kraft hervorgehoben. Abschließend wird ein Finite-Elemente-Modell entwickelt, mit Hilfe dessen die Fingerstruktur weiter optimiert und die Leistungsfähigkeit des SMA-Fingers noch verbessert werden kann. Zusätzlich wird ein Konzentriertes-Parameter-Modell formuliert, um, in der Zukunft, eine leichtere Regelung des Systems zu ermöglichen. Dieses ist notwendig, da der SMA-Finger starke Nichtlinearitäten aufweist, die auf das hysteretische Verhalten der Formgedächtnislegierung zurückzuführen sind

    Motion Planning for Manipulation With Heuristic Search

    Get PDF
    Heuristic searches such as A* search are a popular means of finding least-cost plans due to their generality, strong theoretical guarantees on completeness and optimality, simplicity in implementation, and consistent behavior. In planning for robotic manipulation, however, these techniques are commonly thought of as impractical due to the high-dimensionality of the planning problem. As part of this thesis work, we have developed a heuristic search-based approach to motion planning for manipulation that does deal effectively with the high-dimensionality of the problem. In this thesis, I will present the approach together with its theoretical properties and show how to apply it to single-arm and dual-arm motion planning with upright constraints on a PR2 robot operating in non-trivial cluttered spaces. Then I will explain how we extended our approach to manipulation planning for n-arms with regrasping. In this work, the planner itself makes all of the discrete decisions, including which arm to use for the pickup and putdown, whether handoffs are necessary and how the object should be grasped at each step along the way. An extensive experimental analysis in both simulation and on a physical PR2 shows that, in terms of runtime, our approach is on par with some of the most common sampling-based approaches. This includes benchmarking our planning framework on two domains that we constructed that are common to manufacturing: pick-and-place of fast moving objects and the autonomous assembly of small objects. Between these applications, the planner exhibited fast planning times and the ability to robustly plan paths into and out of tight working environments that are common to assembly. The closing work of this thesis includes an exhaustive study of the natural tradeoff that occurs between planning efficiency versus solution quality for different values of the heuristic inflation factor. A comparison of the solution quality of our planner to paths computed by an asymptotically optimal approach given a great deal of time for path optimization is included as well. Finally, a set of experimental results are included that show that due to our approach\u27s deterministic cost-minimization, similar input tends to lead to similarity in the output. This kind of local consistency is important to the predictability of the robot\u27s motions and contributes to human-robot safety

    Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021

    Get PDF
    This Open Access proceedings presents a good overview of the current research landscape of assembly, handling and industrial robotics. The objective of MHI Colloquium is the successful networking at both academic and management level. Thereby, the colloquium focuses an academic exchange at a high level in order to distribute the obtained research results, to determine synergy effects and trends, to connect the actors in person and in conclusion, to strengthen the research field as well as the MHI community. In addition, there is the possibility to become acquatined with the organizing institute. Primary audience is formed by members of the scientific society for assembly, handling and industrial robotics (WGMHI)

    A Novel Fiber Jamming Theory and Experimental Verification

    Get PDF
    This thesis developed a novel theory of fiber jamming and experimentally verified it. The theory relates the performance, which is the ratio between the stiff and soft states of a fiber jamming chamber, to three relative design parameters: the ratio of the wall thickness to the membrane inner diameter, the ratio of the fiber diameter to membrane inner diameter, and the number of fibers. These three parameters, when held constant across different chamber sizes, hold the performance constant. To test the theory, three different types of fiber jamming chambers were built in three different sizes. Each chamber was set up as a cantilever beam and deflected 10mm in both the un-jammed (soft) and jammed (stiff) states. When the three design parameters were held constant, the performance of the chamber was consistent within 10\%. In contrast, when the parameters were altered, there was a statistically significant p3˘c.0001p \u3c .0001 and noticeable effect on chamber performance. These two results can be used in tandem to design miniaturized fiber jamming chambers. These results also have a direct application in soft robots designed for minimally invasive surgery

    Visual Perception System for Aerial Manipulation: Methods and Implementations

    Get PDF
    La tecnología se evoluciona a gran velocidad y los sistemas autónomos están empezado a ser una realidad. Las compañías están demandando, cada vez más, soluciones robotizadas para mejorar la eficiencia de sus operaciones. Este también es el caso de los robots aéreos. Su capacidad única de moverse libremente por el aire los hace excelentes para muchas tareas que son tediosas o incluso peligrosas para operadores humanos. Hoy en día, la gran cantidad de sensores y drones comerciales los hace soluciones muy tentadoras. Sin embargo, todavía se requieren grandes esfuerzos de obra humana para customizarlos para cada tarea debido a la gran cantidad de posibles entornos, robots y misiones. Los investigadores diseñan diferentes algoritmos de visión, hardware y sensores para afrontar las diferentes tareas. Actualmente, el campo de la robótica manipuladora aérea está emergiendo con el objetivo de extender la cantidad de aplicaciones que estos pueden realizar. Estas pueden ser entre otras, inspección, mantenimiento o incluso operar válvulas u otras máquinas. Esta tesis presenta un sistema de manipulación aérea y un conjunto de algoritmos de percepción para la automatización de las tareas de manipulación aérea. El diseño completo del sistema es presentado y una serie de frameworks son presentados para facilitar el desarrollo de este tipo de operaciones. En primer lugar, la investigación relacionada con el análisis de objetos para manipulación y planificación de agarre considerando diferentes modelos de objetos es presentado. Dependiendo de estos modelos de objeto, se muestran diferentes algoritmos actuales de análisis de agarre y algoritmos de planificación para manipuladores simples y manipuladores duales. En Segundo lugar, el desarrollo de algoritmos de percepción para detección de objetos y estimación de su posicione es presentado. Estos permiten al sistema identificar objetos de cualquier tipo en cualquier escena para localizarlos para efectuar las tareas de manipulación. Estos algoritmos calculan la información necesaria para los análisis de manipulación descritos anteriormente. En tercer lugar. Se presentan algoritmos de visión para localizar el robot en el entorno al mismo tiempo que se elabora un mapa local, el cual es beneficioso para las tareas de manipulación. Estos mapas se enriquecen con información semántica obtenida en los algoritmos de detección. Por último, se presenta el desarrollo del hardware relacionado con la plataforma aérea, el cual incluye unos manipuladores de bajo peso y la invención de una herramienta para realizar tareas de contacto con superficies rígidas que sirve de estimador de la posición del robot. Todas las técnicas presentadas en esta tesis han sido validadas con extensiva experimentación en plataformas reales.Technology is growing fast, and autonomous systems are becoming a reality. Companies are increasingly demanding robotized solutions to improve the efficiency of their operations. It is also the case for aerial robots. Their unique capability of moving freely in the space makes them suitable for many tasks that are tedious and even dangerous for human operators. Nowadays, the vast amount of sensors and commercial drones makes them highly appealing. However, it is still required a strong manual effort to customize the existing solutions to each particular task due to the number of possible environments, robot designs and missions. Different vision algorithms, hardware devices and sensor setups are usually designed by researchers to tackle specific tasks. Currently, aerial manipulation is being intensively studied to allow aerial robots to extend the number of applications. These could be inspection, maintenance, or even operating valves or other machines. This thesis presents an aerial manipulation system and a set of perception algorithms for the automation aerial manipulation tasks. The complete design of the system is presented and modular frameworks are shown to facilitate the development of these kind of operations. At first, the research about object analysis for manipulation and grasp planning considering different object models is presented. Depend on the model of the objects, different state of art grasping analysis are reviewed and planning algorithms for both single and dual manipulators are shown. Secondly, the development of perception algorithms for object detection and pose estimation are presented. They allows the system to identify many kind of objects in any scene and locate them to perform manipulation tasks. These algorithms produce the necessary information for the manipulation analysis described in the previous paragraph. Thirdly, it is presented how to use vision to localize the robot in the environment. At the same time, local maps are created which can be beneficial for the manipulation tasks. These maps are are enhanced with semantic information from the perception algorithm mentioned above. At last, the thesis presents the development of the hardware of the aerial platform which includes the lightweight manipulators and the invention of a novel tool that allows the aerial robot to operate in contact with static objects. All the techniques presented in this thesis have been validated throughout extensive experimentation with real aerial robotic platforms
    corecore