3,109 research outputs found

    Node Activities Learning(NAL)Approach to Build Secure and Privacy-Preserving Routing in Wireless Sensor Networks

    Get PDF
    Wireless networks are becoming the most popular in today communication systems, where users prefer to have wireless connectivity regardless of its geographic location. But the open environment of wireless communication increasing threat on the wireless networks under diverse network circumstances. The random and dynamic activity increases the  vulnerability due to the complete dependency on the intermediate nodes which frequently join and leave the network. It is extremely significant to have a secure routing in such a dynamic network to preserve the data privacy. In this paper, we propose a secure and privacy routing based on Node Activities Learning (NAL) approach. This approach knows the runtime activities of the node to predict the probability of activity transformation for the intentional and unintentional activities which interrupt the data communication and affects the privacy. The mean of privacy is decided based on the node individual trust factor. It also suggests a method for the node which loses their trust due to the unintentional activities. A simulation-based evaluation study shows positive improvisation in secure routing in different malicious node environment

    Node activity based trust and reputation estimation approach for secure and QoS routing in MANET

    Get PDF
    Achieving safe and secure communication in MANETs is a key challenge due to its dynamic nature. A number of security studies disclose that reputation management systems are able to be effectual with less overhead. The reputation of a node is calculated by using automated assessment algorithms depend on predefined trust scheme. This paper proposes a Node Activity-based Trust and Reputation estimation (NA-TRE) approach for the security and QoS routing in MANET. NA-TRE aims to find trust estimation and reputation of a node. The NA-TRE approach monitors the activity changes, packet forwarding or dropping in a node to find the status of the node. The various activities of a node like Normal State (NS), Resource Limitation State (RS) and Malicious State (MS) are monitored. This status of a node is helpful in computing trust and reputation. In this paper NA-TRE approach compared with existing protocols AODV, FACE and TMS to evaluate the efficiency of MANET. The experiment results show that 20% increasing of throughput, 10% decrease of overhead and end to end delay

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    Enhanced cluster based trust management framework for mobile Ad hoc networks

    Get PDF
    Trust management in decentralized networks and MANETs are much more complicated than the traditional access point based on wireless networks. The nodes in MANETs are used to provide trust information or evidence to find trustworthy nodes. However, the trust evaluation procedure depends on the local information due to its limited resources. In a trust management framework, there are issues to be resolved that include inefficient monitoring system with trust, inaccuracy in trust computation assign and lack of path selection based on trust. Therefore, in this research, a Trust Management Framework (TMF) was developed to address the aforementioned issues. The framework has the capability to monitor the network, assign trust values, and select an appropriate path for the transmission of packets among nodes which depends on the assignment of trust values. The TMF provides a secure cluster-based trust management to monitor the network that minimizes network overhead, improves path selection based on trust evaluation, and assigns trust for clusters-nodes with improved packet delivery ratio and delay. The performance of the TMF was assessed by performing simulation with Network Simulator version 2 (NS2). The results of the framework were compared with the state-of-the-art frameworks such as Requirement for Neural TMF (RNTMF), Recommendation Trust Framework with Defence Framework (RTMD), and Energy Efficient Secure Dynamic Source Routing (EESDSR). The results demonstrated that the Packets Delivery Ratio (PDR) of the TMF was 25.2% better than RNTMF, 21.4% better than RTMD, and 18.4% better than EESDSR. The overhead of the TMF was 4.5% less than RNTMF, 23.2% less than RTMD, and 26.8% less than EESDSR. The findings showed that TMF has better performance in terms of trust management in MANETs

    The Internet of Everything

    Get PDF
    In the era before IoT, the world wide web, internet, web 2.0 and social media made people’s lives comfortable by providing web services and enabling access personal data irrespective of their location. Further, to save time and improve efficiency, there is a need for machine to machine communication, automation, smart computing and ubiquitous access to personal devices. This need gave birth to the phenomenon of Internet of Things (IoT) and further to the concept of Internet of Everything (IoE)

    A Survey on Layer-Wise Security Attacks in IoT: Attacks, Countermeasures, and Open-Issues

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Security is a mandatory issue in any network, where sensitive data are transferred safely in the required direction. Wireless sensor networks (WSNs) are the networks formed in hostile areas for different applications. Whatever the application, the WSNs must gather a large amount of sensitive data and send them to an authorized body, generally a sink. WSN has integrated with Internet-of-Things (IoT) via internet access in sensor nodes along with internet-connected devices. The data gathered with IoT are enormous, which are eventually collected by WSN over the Internet. Due to several resource constraints, it is challenging to design a secure sensor network, and for a secure IoT it is essential to have a secure WSN. Most of the traditional security techniques do not work well for WSN. The merger of IoT and WSN has opened new challenges in designing a secure network. In this paper, we have discussed the challenges of creating a secure WSN. This research reviews the layer-wise security protocols for WSN and IoT in the literature. There are several issues and challenges for a secure WSN and IoT, which we have addressed in this research. This research pinpoints the new research opportunities in the security issues of both WSN and IoT. This survey climaxes in abstruse psychoanalysis of the network layer attacks. Finally, various attacks on the network using Cooja, a simulator of ContikiOS, are simulated.Peer reviewe

    Security of the Internet of Things: Vulnerabilities, Attacks and Countermeasures

    Get PDF
    Wireless Sensor Networks (WSNs) constitute one of the most promising third-millennium technologies and have wide range of applications in our surrounding environment. The reason behind the vast adoption of WSNs in various applications is that they have tremendously appealing features, e.g., low production cost, low installation cost, unattended network operation, autonomous and longtime operation. WSNs have started to merge with the Internet of Things (IoT) through the introduction of Internet access capability in sensor nodes and sensing ability in Internet-connected devices. Thereby, the IoT is providing access to huge amount of data, collected by the WSNs, over the Internet. Hence, the security of IoT should start with foremost securing WSNs ahead of the other components. However, owing to the absence of a physical line-of-defense, i.e., there is no dedicated infrastructure such as gateways to watch and observe the flowing information in the network, security of WSNs along with IoT is of a big concern to the scientific community. More specifically, for the application areas in which CIA (confidentiality, integrity, availability) has prime importance, WSNs and emerging IoT technology might constitute an open avenue for the attackers. Besides, recent integration and collaboration of WSNs with IoT will open new challenges and problems in terms of security. Hence, this would be a nightmare for the individuals using these systems as well as the security administrators who are managing those networks. Therefore, a detailed review of security attacks towards WSNs and IoT, along with the techniques for prevention, detection, and mitigation of those attacks are provided in this paper. In this text, attacks are categorized and treated into mainly two parts, most or all types of attacks towards WSNs and IoT are investigated under that umbrella: “Passive Attacks” and “Active Attacks”. Understanding these attacks and their associated defense mechanisms will help paving a secure path towards the proliferation and public acceptance of IoT technology

    THaW publications

    Get PDF
    In 2013, the National Science Foundation\u27s Secure and Trustworthy Cyberspace program awarded a Frontier grant to a consortium of four institutions, led by Dartmouth College, to enable trustworthy cybersystems for health and wellness. As of this writing, the Trustworthy Health and Wellness (THaW) project\u27s bibliography includes more than 130 significant publications produced with support from the THaW grant; these publications document the progress made on many fronts by the THaW research team. The collection includes dissertations, theses, journal papers, conference papers, workshop contributions and more. The bibliography is organized as a Zotero library, which provides ready access to citation materials and abstracts and associates each work with a URL where it may be found, cluster (category), several content tags, and a brief annotation summarizing the work\u27s contribution. For more information about THaW, visit thaw.org

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges
    • …
    corecore