33,038 research outputs found

    A graphics driven approach to discrete event simulation.

    Get PDF
    This thesis investigates the potential of computer graphics in providing for a graphics driven specification system that gives sufficient structure and content to form the simulation model itself. The nature of discrete event simulation modelling, the diagramming method of activity cycle diagrams which underpinned this research, the three phase simulation model structure, and the trend of visual simulation modelling are discussed as the basis for the research. Some current existing simulation languages and packages are reviewed, which gives insight into the essential features of an ideal computer simulation environment. The basic research method adopted was to build systems that exemplified the state of thinking at the time. The purpose of this method was to enable ideas to be developed, discarded and enhanced, and for new ideas to emerge. The research has undergone a series of application developments on the Apple Macintosh to examine the advantages and limitations of such systems. The first system developed during the research, MacACD, provides the basis for proposals concerning the enhancement of the ACD diagramming method in a computer-aided environment. However, MacACD demonstrated the limitations of an ACD interface and the need for a more flexible specification system. HyperSim, a simulation system developed using HyperCard, has all the power of interconnectivity demonstrated as a need by MacACD, but has severe limitations both in terms of security of system development, and an inability to provide a running model directly due to lack of speed. However, the power of an icon-based interconnected textual and diagrammatic based system were demonstrated by the construction of this system during this research, and led to the development of the final system described in this thesis : MacGraSE. The development of this system during this research incorporates many innovations. The main input device is a picture representing the problem, including a background display. This system allows for dynamic icon based visual model running, as well as code generation for complete model embellishments, interactive report writing, and representational graphics outputs

    Simulation modelling and visualisation: toolkits for building artificial worlds

    Get PDF
    Simulations users at all levels make heavy use of compute resources to drive computational simulations for greatly varying applications areas of research using different simulation paradigms. Simulations are implemented in many software forms, ranging from highly standardised and general models that run in proprietary software packages to ad hoc hand-crafted simulations codes for very specific applications. Visualisation of the workings or results of a simulation is another highly valuable capability for simulation developers and practitioners. There are many different software libraries and methods available for creating a visualisation layer for simulations, and it is often a difficult and time-consuming process to assemble a toolkit of these libraries and other resources that best suits a particular simulation model. We present here a break-down of the main simulation paradigms, and discuss differing toolkits and approaches that different researchers have taken to tackle coupled simulation and visualisation in each paradigm

    Discrete event simulation and virtual reality use in industry: new opportunities and future trends

    Get PDF
    This paper reviews the area of combined discrete event simulation (DES) and virtual reality (VR) use within industry. While establishing a state of the art for progress in this area, this paper makes the case for VR DES as the vehicle of choice for complex data analysis through interactive simulation models, highlighting both its advantages and current limitations. This paper reviews active research topics such as VR and DES real-time integration, communication protocols, system design considerations, model validation, and applications of VR and DES. While summarizing future research directions for this technology combination, the case is made for smart factory adoption of VR DES as a new platform for scenario testing and decision making. It is put that in order for VR DES to fully meet the visualization requirements of both Industry 4.0 and Industrial Internet visions of digital manufacturing, further research is required in the areas of lower latency image processing, DES delivery as a service, gesture recognition for VR DES interaction, and linkage of DES to real-time data streams and Big Data sets

    Real-time Error Control for Surgical Simulation

    Get PDF
    Objective: To present the first real-time a posteriori error-driven adaptive finite element approach for real-time simulation and to demonstrate the method on a needle insertion problem. Methods: We use corotational elasticity and a frictional needle/tissue interaction model. The problem is solved using finite elements within SOFA. The refinement strategy relies upon a hexahedron-based finite element method, combined with a posteriori error estimation driven local hh-refinement, for simulating soft tissue deformation. Results: We control the local and global error level in the mechanical fields (e.g. displacement or stresses) during the simulation. We show the convergence of the algorithm on academic examples, and demonstrate its practical usability on a percutaneous procedure involving needle insertion in a liver. For the latter case, we compare the force displacement curves obtained from the proposed adaptive algorithm with that obtained from a uniform refinement approach. Conclusions: Error control guarantees that a tolerable error level is not exceeded during the simulations. Local mesh refinement accelerates simulations. Significance: Our work provides a first step to discriminate between discretization error and modeling error by providing a robust quantification of discretization error during simulations.Comment: 12 pages, 16 figures, change of the title, submitted to IEEE TBM

    GEANT4 : a simulation toolkit

    Get PDF
    Abstract Geant4 is a toolkit for simulating the passage of particles through matter. It includes a complete range of functionality including tracking, geometry, physics models and hits. The physics processes offered cover a comprehensive range, including electromagnetic, hadronic and optical processes, a large set of long-lived particles, materials and elements, over a wide energy range starting, in some cases, from 250 eV and extending in others to the TeV energy range. It has been designed and constructed to expose the physics models utilised, to handle complex geometries, and to enable its easy adaptation for optimal use in different sets of applications. The toolkit is the result of a worldwide collaboration of physicists and software engineers. It has been created exploiting software engineering and object-oriented technology and implemented in the C++ programming language. It has been used in applications in particle physics, nuclear physics, accelerator design, space engineering and medical physics. PACS: 07.05.Tp; 13; 2

    Enabling Cross-Event Optimization in Discrete-Event Simulation Through Compile-Time Event Batching

    Get PDF
    A discrete-event simulation (DES) involves the execution of a sequence of event handlers dynamically scheduled at runtime. As a consequence, a priori knowledge of the control flow of the overall simulation program is limited. In particular, powerful optimizations supported by modern compilers can only be applied on the scope of individual event handlers, which frequently involve only a few lines of code. We propose a method that extends the scope for compiler optimizations in discrete-event simulations by generating batches of multiple events that are subjected to compiler optimizations as contiguous procedures. A runtime mechanism executes suitable batches at negligible overhead. Our method does not require any compiler extensions and introduces only minor additional effort during model development. The feasibility and potential performance gains of the approach are illustrated on the example of an idealized proof-ofconcept model. We believe that the applicability of the approach extends to general event-driven programs

    Simulation of networks of spiking neurons: A review of tools and strategies

    Full text link
    We review different aspects of the simulation of spiking neural networks. We start by reviewing the different types of simulation strategies and algorithms that are currently implemented. We next review the precision of those simulation strategies, in particular in cases where plasticity depends on the exact timing of the spikes. We overview different simulators and simulation environments presently available (restricted to those freely available, open source and documented). For each simulation tool, its advantages and pitfalls are reviewed, with an aim to allow the reader to identify which simulator is appropriate for a given task. Finally, we provide a series of benchmark simulations of different types of networks of spiking neurons, including Hodgkin-Huxley type, integrate-and-fire models, interacting with current-based or conductance-based synapses, using clock-driven or event-driven integration strategies. The same set of models are implemented on the different simulators, and the codes are made available. The ultimate goal of this review is to provide a resource to facilitate identifying the appropriate integration strategy and simulation tool to use for a given modeling problem related to spiking neural networks.Comment: 49 pages, 24 figures, 1 table; review article, Journal of Computational Neuroscience, in press (2007

    A 3D immersive discrete event simulator for enabling prototyping of factory layouts

    Get PDF
    There is an increasing need to eliminate wasted time and money during factory layout design and subsequent construction. It is presently difficult for engineers to foresee if a certain layout is optimal for work and material flows. By exploiting modelling, simulation and visualisation techniques, this paper presents a tool concept called immersive WITNESS that combines the modelling strengths of Discrete Event Simulation (DES) with the 3D visualisation strengths of recent 3D low cost gaming technology to enable decision makers make informed design choices for future factories layouts. The tool enables engineers to receive immediate feedback on their design choices. Our results show that this tool has the potential to reduce rework as well as the associated costs of making physical prototypes
    • 

    corecore