1,136 research outputs found

    Detecting Malicious Software By Dynamicexecution

    Get PDF
    Traditional way to detect malicious software is based on signature matching. However, signature matching only detects known malicious software. In order to detect unknown malicious software, it is necessary to analyze the software for its impact on the system when the software is executed. In one approach, the software code can be statically analyzed for any malicious patterns. Another approach is to execute the program and determine the nature of the program dynamically. Since the execution of malicious code may have negative impact on the system, the code must be executed in a controlled environment. For that purpose, we have developed a sandbox to protect the system. Potential malicious behavior is intercepted by hooking Win32 system calls. Using the developed sandbox, we detect unknown virus using dynamic instruction sequences mining techniques. By collecting runtime instruction sequences in basic blocks, we extract instruction sequence patterns based on instruction associations. We build classification models with these patterns. By applying this classification model, we predict the nature of an unknown program. We compare our approach with several other approaches such as simple heuristics, NGram and static instruction sequences. We have also developed a method to identify a family of malicious software utilizing the system call trace. We construct a structural system call diagram from captured dynamic system call traces. We generate smart system call signature using profile hidden Markov model (PHMM) based on modularized system call block. Smart system call signature weakly identifies a family of malicious software

    Combatting Advanced Persistent Threat via Causality Inference and Program Analysis

    Get PDF
    Cyber attackers are becoming more and more sophisticated. In particular, Advanced Persistent Threat (APT) is a new class of attack that targets a specifc organization and compromises systems over a long time without being detected. Over the years, we have seen notorious examples of APTs including Stuxnet which disrupted Iranian nuclear centrifuges and data breaches affecting millions of users. Investigating APT is challenging as it occurs over an extended period of time and the attack process is highly sophisticated and stealthy. Also, preventing APTs is diffcult due to ever-expanding attack vectors. In this dissertation, we present proposals for dealing with challenges in attack investigation. Specifcally, we present LDX which conducts precise counter-factual causality inference to determine dependencies between system calls (e.g., between input and output system calls) and allows investigators to determine the origin of an attack (e.g., receiving a spam email) and the propagation path of the attack, and assess the consequences of the attack. LDX is four times more accurate and two orders of magnitude faster than state-of-the-art taint analysis techniques. Moreover, we then present a practical model-based causality inference system, MCI, which achieves precise and accurate causality inference without requiring any modifcation or instrumentation in end-user systems. Second, we show a general protection system against a wide spectrum of attack vectors and methods. Specifcally, we present A2C that prevents a wide range of attacks by randomizing inputs such that any malicious payloads contained in the inputs are corrupted. The protection provided by A2C is both general (e.g., against various attack vectors) and practical (7% runtime overhead)

    Feature trade-off analysis for reconnaissance detection.

    Get PDF
    An effective cyber early warning system (CEWS) should pick up threat activity at an early stage, with an emphasis on establishing hypotheses and predictions as well as generating alerts on (unclassified) situations based on preliminary indications. The design and implementation of such early warning systems involve numerous challenges such as generic set of indicators, intelligence gathering, uncertainty reasoning and information fusion. This chapter begins with an understanding of the behaviours of intruders and then related literature is followed by the proposed methodology using a Bayesian inference-based system. It also includes a carefully deployed empirical analysis on a data set labelled for reconnaissance activity. Finally, the chapter concludes with a discussion on results, research challenges and necessary suggestions to move forward in this research line
    • …
    corecore