2,081 research outputs found

    A Graph-based Approach for Detecting Critical Infrastructure Disruptions on Social Media in Disasters

    Get PDF
    The objective of this paper is to propose and test a graph-based approach for detection of critical infrastructure disruptions in social media data in disasters. Understanding the situation and disruptive events of critical infrastructure is essential to effective disaster response and recovery of communities. The potential of social media data for situation awareness during disasters has been highlighted in recent studies. However, the application of social sensing in detecting disruptions of critical infrastructure is limited because existing approaches cannot provide complete and non-ambiguous situational information about critical infrastructure. Therefore, to address this methodological gap, we developed a graph-based approach including data filtering, burst time-frame detection, content similarity and graph analysis. A case study of Hurricane Harvey in 2017 in Houston was conducted to illustrate the application of the proposed approach. The findings highlighted the temporal patterns of critical infrastructure events that occurred in disasters including disruptive events and their adverse impacts on communities. The findings also provided insights for better understanding critical infrastructure interdependencies in disasters. From the practical perspective, the proposed methodology study can improve the ability of community members, first responders and decision makers to detect and respond to infrastructure disruptions in disasters

    Statistical and machine learning models for critical infrastructure resilience

    Get PDF
    This thesis presents a data-driven approach to improving predictions of critical infrastructure behaviors. In our first approach, we explore novel data sources and time series modeling techniques to model disaster impacts on power systems through the case study of Hurricane Sandy as it impacted the state of New York. We find a correlation between Twitter data and load forecast errors, suggesting that Twitter data may provide value towards predicting impacts of disasters on infrastructure systems. Based on these findings, we then develop time series forecasting methods to predict the NYISO power system behaviors at the zonal level, utilizing Twitter and load forecast data as model inputs. In our second approach, we develop a novel, graph-based formulation of the British rail network to model the nonlinear cascading delays on the rail network. Using this formulation, we then develop machine learning approaches to predict delays in the rail network. Through experiments on real-world rail data, we find that the selected architecture provides more accurate predictions than other models due to its ability to capture both spatial and temporal dimensions of the data

    Rethinking Infrastructure Resilience Assessment with Human Sentiment Reactions on Social Media in Disasters

    Get PDF
    The objective of this study is to propose and test a theoretical framework which integrates the human sentiment reactions on social media in disasters into infrastructure resilience assessment. Infrastructure resilience assessment is important for reducing adverse consequences of infrastructure failures and promoting human well-being in natural disasters. Integrating societal impacts of infrastructure disruptions can enable a better understanding of infrastructure performance in disasters and human capacities under the stress of disruptions. However, the consideration of societal impacts of infrastructure disruptions is limited in existing studies for infrastructure resilience assessment. The reasons are twofold: first, an integrative theoretical framework for connecting the societal impacts to infrastructure resilience is missing; and second, gathering empirical data for capturing societal impacts of disaster disruptions is challenging. This study proposed a theoretical framework to examine the relationship between the societal impacts and infrastructure performance in disasters using social media data. Sentiments of human messages for relevant infrastructure systems are adopted as an indicator of societal impacts of infrastructure disruptions. A case study for electricity and transportation systems in Houston during the 2017 Hurricane Harvey was conducted to illustrate the application of the proposed framework. We find a relation between human sentiment and infrastructure status and validate it by extracting situational information from relevant tweets and official public data. The findings enable a better understanding of societal expectations and collective sentiments regarding the infrastructure disruptions. Practically, the findings also improve the ability of infrastructure management agencies in infrastructure prioritization and planning decisions

    Vulnerability analysis in complex networks under a flood risk reduction point of view

    Get PDF
    The measurement and mapping of transportation network vulnerability to natural hazards constitute subjects of global interest for a sustainable development agenda and as means of adaptation to climate change. During a flood, some elements of a transportation network can be affected, causing the loss of lives. Furthermore, impacts include damage to vehicles, streets/roads, and other logistics services - sometimes with severe economic consequences. The Network Science approach may offer a valuable perspective considering one type of vulnerability related to network-type critical infrastructures: the topological vulnerability. The topological vulnerability index associated with an element is defined as reducing the network’s average efficiency due to removing the set of edges related to that element. In this paper, we present the results of a systematic literature overview and a case study applying the topological vulnerability index for the highways in Santa Catarina (Brazil). We produce a map considering that index and areas susceptible to urban floods and landslides. Risk knowledge, combining hazard and vulnerability, is the first pillar of an Early Warning System and represents an important tool for stakeholders of the transportation sector in a disaster risk reduction agenda.Peer Reviewe

    Understanding Network Dynamics in Flooding Emergencies for Urban Resilience

    Get PDF
    Many cities around the world are exposed to extreme flooding events. As a result of rapid population growth and urbanization, cities are also likely to become more vulnerable in the future and subsequently, more disruptions would occur in the face of flooding. Resilience, an ability of strong resistance to and quick recovery from emergencies, has been an emerging and important goal of cities. Uncovering mechanisms of flooding emergencies and developing effective tools to sense, communicate, predict and respond to emergencies is critical to enhancing the resilience of cities. To overcome this challenge, existing studies have attempted to conduct post-disaster surveys, adopt remote sensing technologies, and process news articles in the aftermath of disasters. Despite valuable insights obtained in previous literature, technologies for real-time and predictive situational awareness are still missing. This limitation is mainly due to two barriers. First, existing studies only use conventional data sources, which often suppress the temporal resolution of situational information. Second, models and theories that can capture the real-time situation is limited. To bridge these gaps, I employ human digital trace data from multiple data sources such as Twitter, Nextdoor, and INTRIX. My study focuses on developing models and theories to expand the capacity of cities in real-time and predictive situational awareness using digital trace data. In the first study, I developed a graph-based method to create networks of information, extract critical messages, and map the evolution of infrastructure disruptions in flooding events from Twitter. My second study proposed and tested an online network reticulation theory to understand how humans communicate and spread situational information on social media in response to service disruptions. The third study proposed and tested a network percolation-based contagion model to understand how floodwaters spread over urban road networks and the extent to which we can predict the flooding in the next few hours. In the last study, I developed an adaptable reinforcement learning model to leverage human trace data from normal situations and simulate traffic conditions during the flooding. All proposed methods and theories have significant implications and applications in improving the real-time and predictive situational awareness in flooding emergencies

    Critical Infrastructure Analysis (CRITIS) in Developing Regions – Designing an Approach to Analyse Peripheral Remoteness, Risks of Accessibility Loss, and Isolation due to Road Network Insufficiencies in Chile. GI_Forum|GI_Forum 2018, Volume 2|

    Get PDF
    Modernizing societies become increasingly dependent on critical infrastructures (CRITIS), one of the most important of which is the road network. Road networks are vulnerable to hazards from the natural environment (e.g. extreme weather conditions, seismic and volcanic events, and landslides) and social environment (e.g. intentional attacks, traffic jams, roadblocks). Conversely, road networks impose vulnerability on their social environment (e.g. on people trying to leave disaster zones). Investigating the particular vulnerability of a given road network in order to increase its resilience is crucial for disaster risk reduction by spatial planning. However, in many cases in developing countries, the vulnerability of people still seems more pressing than the vulnerability of CRITIS. This paper develops an approach for investigating road network vulnerability in developing regions, using a Chilean example. However, the approach is sufficiently generic to be applied to comparable situations in other countries

    How to Think About Resilient Infrastructure Systems

    Get PDF
    abstract: Resilience is emerging as the preferred way to improve the protection of infrastructure systems beyond established risk management practices. Massive damages experienced during tragedies like Hurricane Katrina showed that risk analysis is incapable to prevent unforeseen infrastructure failures and shifted expert focus towards resilience to absorb and recover from adverse events. Recent, exponential growth in research is now producing consensus on how to think about infrastructure resilience centered on definitions and models from influential organizations like the US National Academy of Sciences. Despite widespread efforts, massive infrastructure failures in 2017 demonstrate that resilience is still not working, raising the question: Are the ways people think about resilience producing resilient infrastructure systems? This dissertation argues that established thinking harbors misconceptions about infrastructure systems that diminish attempts to improve their resilience. Widespread efforts based on the current canon focus on improving data analytics, establishing resilience goals, reducing failure probabilities, and measuring cascading losses. Unfortunately, none of these pursuits change the resilience of an infrastructure system, because none of them result in knowledge about how data is used, goals are set, or failures occur. Through the examination of each misconception, this dissertation results in practical, new approaches for infrastructure systems to respond to unforeseen failures via sensing, adapting, and anticipating processes. Specifically, infrastructure resilience is improved by sensing when data analytics include the modeler-in-the-loop, adapting to stress contexts by switching between multiple resilience strategies, and anticipating crisis coordination activities prior to experiencing a failure. Overall, results demonstrate that current resilience thinking needs to change because it does not differentiate resilience from risk. The majority of research thinks resilience is a property that a system has, like a noun, when resilience is really an action a system does, like a verb. Treating resilience as a noun only strengthens commitment to risk-based practices that do not protect infrastructure from unknown events. Instead, switching to thinking about resilience as a verb overcomes prevalent misconceptions about data, goals, systems, and failures, and may bring a necessary, radical change to the way infrastructure is protected in the future.Dissertation/ThesisDoctoral Dissertation Civil, Environmental and Sustainable Engineering 201
    corecore