3 research outputs found

    Pre and Post-hoc Diagnosis and Interpretation of Malignancy from Breast DCE-MRI

    Full text link
    We propose a new method for breast cancer screening from DCE-MRI based on a post-hoc approach that is trained using weakly annotated data (i.e., labels are available only at the image level without any lesion delineation). Our proposed post-hoc method automatically diagnosis the whole volume and, for positive cases, it localizes the malignant lesions that led to such diagnosis. Conversely, traditional approaches follow a pre-hoc approach that initially localises suspicious areas that are subsequently classified to establish the breast malignancy -- this approach is trained using strongly annotated data (i.e., it needs a delineation and classification of all lesions in an image). Another goal of this paper is to establish the advantages and disadvantages of both approaches when applied to breast screening from DCE-MRI. Relying on experiments on a breast DCE-MRI dataset that contains scans of 117 patients, our results show that the post-hoc method is more accurate for diagnosing the whole volume per patient, achieving an AUC of 0.91, while the pre-hoc method achieves an AUC of 0.81. However, the performance for localising the malignant lesions remains challenging for the post-hoc method due to the weakly labelled dataset employed during training.Comment: Submitted to Medical Image Analysi

    WiFi-Based Human Activity Recognition Using Attention-Based BiLSTM

    Get PDF
    Recently, significant efforts have been made to explore human activity recognition (HAR) techniques that use information gathered by existing indoor wireless infrastructures through WiFi signals without demanding the monitored subject to carry a dedicated device. The key intuition is that different activities introduce different multi-paths in WiFi signals and generate different patterns in the time series of channel state information (CSI). In this paper, we propose and evaluate a full pipeline for a CSI-based human activity recognition framework for 12 activities in three different spatial environments using two deep learning models: ABiLSTM and CNN-ABiLSTM. Evaluation experiments have demonstrated that the proposed models outperform state-of-the-art models. Also, the experiments show that the proposed models can be applied to other environments with different configurations, albeit with some caveats. The proposed ABiLSTM model achieves an overall accuracy of 94.03%, 91.96%, and 92.59% across the 3 target environments. While the proposed CNN-ABiLSTM model reaches an accuracy of 98.54%, 94.25% and 95.09% across those same environments

    A graph-based lesion characterization and deep embedding approach for improved computer-aided diagnosis of nonmass breast MRI lesions

    No full text
    Nonmass-like enhancements are a common but diagnostically challenging finding in breast MRI. Nonmass-like lesions can be described as clusters of spatially and temporally inter-connected regions of enhancements, so they can be modeled as networks and their properties characterized via network-based connectivity. In this work, we represented nonmass lesions as graphs using a link formation energy model that favors linkages between regions of similar enhancement and closer spatial proximity. However, adding graph features to an existing computer-aided diagnosis (CAD) pipeline incurs an increase of feature space dimensionality, which poses additional challenges to traditional supervised machine learning techniques due to the inability to increase accordingly the number of training datasets. We propose the combination of unsupervised dimensionality reduction and embedded space clustering followed by a supervised classifier to improve the performance of a CAD system for nonmass-like lesions in breast MRI. Our work extends a previoulsy proposed framework for deep embedded unsupervised clustering (DEC) to embedding space classification, with the joint optimization of objective functions for DEC and supervised multi-layered perceptron (MLP) classification. The strength of the method lies in the ability to learn and further optimize an embedded feature representation of lower dimensionality that maximizes the diagnostic accuracy of a CAD lesion classifier to discriminate between benign and malignant lesions. We identified 792 nonmass-like enhancements (267 benign, 110 malignant and 415 unknown) in 411 patients undergoing breast MRI at our institution. The diagnostic performance of the proposed method was evaluated and compared to the performance of a conventional supervised MLP classifier in original feature space. A statistically significant increase in diagnostic area under the ROC curve (AUC) was achieved. Generalization AUC increased from 0.67 ± 0.08 to 0.81 ± 0.10 (21% increase, p-value=4.2×10-8) with the proposed graph-based lesion characterization and deep embedding framework.This research is funded by the Canadian Breast Cancer Foundation (CBCF) - Ontario Region, and the Ontario Institute for Cancer Research (OICR) through funding provided by the Government of Ontario
    corecore