53,971 research outputs found

    Statistical models of complex brain networks: a maximum entropy approach

    Full text link
    The brain is a highly complex system. Most of such complexity stems from the intermingled connections between its parts, which give rise to rich dynamics and to the emergence of high-level cognitive functions. Disentangling the underlying network structure is crucial to understand the brain functioning under both healthy and pathological conditions. Yet, analyzing brain networks is challenging, in part because their structure represents only one possible realization of a generative stochastic process which is in general unknown. Having a formal way to cope with such intrinsic variability is therefore central for the characterization of brain network properties. Addressing this issue entails the development of appropriate tools mostly adapted from network science and statistics. Here, we focus on a particular class of maximum entropy models for networks, i.e. exponential random graph models (ERGMs), as a parsimonious approach to identify the local connection mechanisms behind observed global network structure. Efforts are reviewed on the quest for basic organizational properties of human brain networks, as well as on the identification of predictive biomarkers of neurological diseases such as stroke. We conclude with a discussion on how emerging results and tools from statistical graph modeling, associated with forthcoming improvements in experimental data acquisition, could lead to a finer probabilistic description of complex systems in network neuroscience.Comment: 34 pages, 8 figure

    Consensus Computation in Unreliable Networks: A System Theoretic Approach

    Full text link
    This work addresses the problem of ensuring trustworthy computation in a linear consensus network. A solution to this problem is relevant for several tasks in multi-agent systems including motion coordination, clock synchronization, and cooperative estimation. In a linear consensus network, we allow for the presence of misbehaving agents, whose behavior deviate from the nominal consensus evolution. We model misbehaviors as unknown and unmeasurable inputs affecting the network, and we cast the misbehavior detection and identification problem into an unknown-input system theoretic framework. We consider two extreme cases of misbehaving agents, namely faulty (non-colluding) and malicious (Byzantine) agents. First, we characterize the set of inputs that allow misbehaving agents to affect the consensus network while remaining undetected and/or unidentified from certain observing agents. Second, we provide worst-case bounds for the number of concurrent faulty or malicious agents that can be detected and identified. Precisely, the consensus network needs to be 2k+1 (resp. k+1) connected for k malicious (resp. faulty) agents to be generically detectable and identifiable by every well behaving agent. Third, we quantify the effect of undetectable inputs on the final consensus value. Fourth, we design three algorithms to detect and identify misbehaving agents. The first and the second algorithm apply fault detection techniques, and affords complete detection and identification if global knowledge of the network is available to each agent, at a high computational cost. The third algorithm is designed to exploit the presence in the network of weakly interconnected subparts, and provides local detection and identification of misbehaving agents whose behavior deviates more than a threshold, which is quantified in terms of the interconnection structure

    Network Reconstruction from Intrinsic Noise

    Full text link
    This paper considers the problem of inferring an unknown network of dynamical systems driven by unknown, intrinsic, noise inputs. Equivalently we seek to identify direct causal dependencies among manifest variables only from observations of these variables. For linear, time-invariant systems of minimal order, we characterise under what conditions this problem is well posed. We first show that if the transfer matrix from the inputs to manifest states is minimum phase, this problem has a unique solution irrespective of the network topology. This is equivalent to there being only one valid spectral factor (up to a choice of signs of the inputs) of the output spectral density. If the assumption of phase-minimality is relaxed, we show that the problem is characterised by a single Algebraic Riccati Equation (ARE), of dimension determined by the number of latent states. The number of solutions to this ARE is an upper bound on the number of solutions for the network. We give necessary and sufficient conditions for any two dynamical networks to have equal output spectral density, which can be used to construct all equivalent networks. Extensive simulations quantify the number of solutions for a range of problem sizes. For a slightly simpler case, we also provide an algorithm to construct all equivalent networks from the output spectral density.Comment: 11 pages, submitted to IEEE Transactions on Automatic Contro

    Identifying Nonlinear 1-Step Causal Influences in Presence of Latent Variables

    Full text link
    We propose an approach for learning the causal structure in stochastic dynamical systems with a 11-step functional dependency in the presence of latent variables. We propose an information-theoretic approach that allows us to recover the causal relations among the observed variables as long as the latent variables evolve without exogenous noise. We further propose an efficient learning method based on linear regression for the special sub-case when the dynamics are restricted to be linear. We validate the performance of our approach via numerical simulations
    corecore