4,640 research outputs found

    Data granulation by the principles of uncertainty

    Full text link
    Researches in granular modeling produced a variety of mathematical models, such as intervals, (higher-order) fuzzy sets, rough sets, and shadowed sets, which are all suitable to characterize the so-called information granules. Modeling of the input data uncertainty is recognized as a crucial aspect in information granulation. Moreover, the uncertainty is a well-studied concept in many mathematical settings, such as those of probability theory, fuzzy set theory, and possibility theory. This fact suggests that an appropriate quantification of the uncertainty expressed by the information granule model could be used to define an invariant property, to be exploited in practical situations of information granulation. In this perspective, a procedure of information granulation is effective if the uncertainty conveyed by the synthesized information granule is in a monotonically increasing relation with the uncertainty of the input data. In this paper, we present a data granulation framework that elaborates over the principles of uncertainty introduced by Klir. Being the uncertainty a mesoscopic descriptor of systems and data, it is possible to apply such principles regardless of the input data type and the specific mathematical setting adopted for the information granules. The proposed framework is conceived (i) to offer a guideline for the synthesis of information granules and (ii) to build a groundwork to compare and quantitatively judge over different data granulation procedures. To provide a suitable case study, we introduce a new data granulation technique based on the minimum sum of distances, which is designed to generate type-2 fuzzy sets. We analyze the procedure by performing different experiments on two distinct data types: feature vectors and labeled graphs. Results show that the uncertainty of the input data is suitably conveyed by the generated type-2 fuzzy set models.Comment: 16 pages, 9 figures, 52 reference

    Hydrodynamical simulations of convection-related stellar micro-variability. II. The enigmatic granulation background of the COROT target HD49933

    Full text link
    Local-box hydrodynamical model atmospheres provide statistical information about a star's emergent radiation field which allows one to predict the level of its granulation-related micro-variability. Space-based photometry is now sufficiently accurate to test model predictions. We aim to model the photometric granulation background of HD49933 as well as the Sun, and compare the predictions to the measurements obtained by the COROT and SOHO satellite missions. We construct hydrodynamical model atmospheres representing HD49933 and the Sun, and use a previously developed scaling technique to obtain the observable disk-integrated brightness fluctuations. We further performed exploratory magneto-hydrodynamical simulations to gauge the impact of small scale magnetic fields on the synthetic light-curves. We find that the granulation-related brightness fluctuations depend on metallicity. We obtain a satisfactory correspondence between prediction and observation for the Sun, validating our approach. For HD49933, we arrive at a significant over-estimation by a factor of two to three in total power. Locally generated magnetic fields are unlikely to be responsible, otherwise existing fields would need to be rather strong to sufficiently suppress the granulation signal. Presently suggested updates on the fundamental stellar parameters do not improve the correspondence; however, an ad-hoc increase of the HD49933 surface gravity by about 0.2dex would eliminate most of the discrepancy. We diagnose a puzzling discrepancy between the predicted and observed granulation background in HD49933, with only rather ad-hoc ideas for remedies at hand.Comment: 7 pages, 5 figures, accepted for publication in A&

    Quiet-Sun imaging asymmetries in NaI D1 compared with other strong Fraunhofer lines

    Full text link
    Imaging spectroscopy of the solar atmosphere using the NaI D1 line yields marked asymmetry between the blue and red line wings: sampling a quiet-Sun area in the blue wing displays reversed granulation, whereas sampling in the red wing displays normal granulation. The MgI b2 line of comparable strength does not show this asymmetry, nor does the stronger CaII 8542 line. We demonstrate the phenomenon with near-simultaneous spectral images in NaI D1, MgI b2, and CaII 8542 from the Swedish 1-m Solar Telescope. We then explain it with line-formation insights from classical 1D modeling and with a 3D magnetohydrodynamical simulation combined with NLTE spectral line synthesis that permits detailed comparison with the observations in a common format. The cause of the imaging asymmetry is the combination of correlations between intensity and Dopplershift modulation in granular overshoot and the sensitivity to these of the steep profile flanks of the NaI D1 line. The MgI b2 line has similar core formation but much wider wings due to larger opacity buildup and damping in the photosphere. Both lines obtain marked core asymmetry from photospheric shocks in or near strong magnetic concentrations, less from higher-up internetwork shocks that produce similar asymmetry in the spatially averaged CaII 8542 profile.Comment: Accepted by Astron & Astrophys. In each in-text citation the year links to the corresponding ADS abstract pag

    Solar Magnetic Tracking. I. Software Comparison and Recommended Practices

    Full text link
    Feature tracking and recognition are increasingly common tools for data analysis, but are typically implemented on an ad-hoc basis by individual research groups, limiting the usefulness of derived results when selection effects and algorithmic differences are not controlled. Specific results that are affected include the solar magnetic turnover time, the distributions of sizes, strengths, and lifetimes of magnetic features, and the physics of both small scale flux emergence and the small-scale dynamo. In this paper, we present the results of a detailed comparison between four tracking codes applied to a single set of data from SOHO/MDI, describe the interplay between desired tracking behavior and parameterization of tracking algorithms, and make recommendations for feature selection and tracking practice in future work.Comment: In press for Astrophys. J. 200

    Measuring the Hidden Aspects of Solar Magnetism

    Full text link
    2008 marks the 100th anniversary of the discovery of astrophysical magnetic fields, when George Ellery Hale recorded the Zeeman splitting of spectral lines in sunspots. With the introduction of Babcock's photoelectric magnetograph it soon became clear that the Sun's magnetic field outside sunspots is extremely structured. The field strengths that were measured were found to get larger when the spatial resolution was improved. It was therefore necessary to come up with methods to go beyond the spatial resolution limit and diagnose the intrinsic magnetic-field properties without dependence on the quality of the telescope used. The line-ratio technique that was developed in the early 1970s revealed a picture where most flux that we see in magnetograms originates in highly bundled, kG fields with a tiny volume filling factor. This led to interpretations in terms of discrete, strong-field magnetic flux tubes embedded in a rather field-free medium, and a whole industry of flux tube models at increasing levels of sophistication. This magnetic-field paradigm has now been shattered with the advent of high-precision imaging polarimeters that allow us to apply the so-called "Second Solar Spectrum" to diagnose aspects of solar magnetism that have been hidden to Zeeman diagnostics. It is found that the bulk of the photospheric volume is seething with intermediately strong, tangled fields. In the new paradigm the field behaves like a fractal with a high degree of self-similarity, spanning about 8 orders of magnitude in scale size, down to scales of order 10 m.Comment: To appear in "Magnetic Coupling between the Interior and the Atmosphere of the Sun", eds. S.S. Hasan and R.J. Rutten, Astrophysics and Space Science Proceedings, Springer-Verlag, Heidelberg, Berlin, 200

    Numerical simulation of the three-dimensional structure and dynamics of the non-magnetic solar chromosphere

    Full text link
    Three-dimensional numerical simulations with CO5BOLD, a new radiation hydrodynamics code, result in a dynamic, thermally bifurcated model of the non-magnetic chromosphere of the quiet Sun. The 3-D model includes the middle and low chromosphere, the photosphere, and the top of the convection zone, where acoustic waves are excited by convective motions. While the waves propagate upwards, they steepen into shocks, dissipate, and deposit their mechanical energy as heat in the chromosphere. Our numerical simulations show for the first time a complex 3-D structure of the chromospheric layers, formed by the interaction of shock waves. Horizontal temperature cross-sections of the model chromosphere exhibit a network of hot filaments and enclosed cool regions. The horizontal pattern evolves on short time-scales of the order of typically 20 - 25 seconds, and has spatial scales comparable to those of the underlying granulation. The resulting thermal bifurcation, i.e., the co-existence of cold and hot regions, provides temperatures high enough to produce the observed chromospheric UV emission and -- at the same time -- temperatures cold enough to allow the formation of molecules (e.g., carbon monoxide). Our 3-D model corroborates the finding by Carlsson & Stein (1994) that the chromospheric temperature rise of semi-empirical models does not necessarily imply an increase in the average gas temperature but can be explained by the presence of substantial spatial and temporal temperature inhomogeneities.Comment: 18 pages, 13 figures, accepted by Astronomy & Astrophysics (30/10/03
    • …
    corecore