39 research outputs found

    Computational analysis of noncoding RNAs

    Get PDF
    Noncoding RNAs have emerged as important key players in the cell. Understanding their surprisingly diverse range of functions is challenging for experimental and computational biology. Here, we review computational methods to analyze noncoding RNAs. The topics covered include basic and advanced techniques to predict RNA structures, annotation of noncoding RNAs in genomic data, mining RNA-seq data for novel transcripts and prediction of transcript structures, computational aspects of microRNAs, and database resources.Austrian Science Fund (Schrodinger Fellowship J2966-B12)German Research Foundation (grant WI 3628/1-1 to SW)National Institutes of Health (U.S.) (NIH award 1RC1CA147187

    SimulFold: Simultaneously Inferring RNA Structures Including Pseudoknots, Alignments, and Trees Using a Bayesian MCMC Framework

    Get PDF
    Computational methods for predicting evolutionarily conserved rather than thermodynamic RNA structures have recently attracted increased interest. These methods are indispensable not only for elucidating the regulatory roles of known RNA transcripts, but also for predicting RNA genes. It has been notoriously difficult to devise them to make the best use of the available data and to predict high-quality RNA structures that may also contain pseudoknots. We introduce a novel theoretical framework for co-estimating an RNA secondary structure including pseudoknots, a multiple sequence alignment, and an evolutionary tree, given several RNA input sequences. We also present an implementation of the framework in a new computer program, called SimulFold, which employs a Bayesian Markov chain Monte Carlo method to sample from the joint posterior distribution of RNA structures, alignments, and trees. We use the new framework to predict RNA structures, and comprehensively evaluate the quality of our predictions by comparing our results to those of several other programs. We also present preliminary data that show SimulFold's potential as an alignment and phylogeny prediction method. SimulFold overcomes many conceptual limitations that current RNA structure prediction methods face, introduces several new theoretical techniques, and generates high-quality predictions of conserved RNA structures that may include pseudoknots. It is thus likely to have a strong impact, both on the field of RNA structure prediction and on a wide range of data analyses

    Algorithms for RNA secondary structure analysis : prediction of pseudoknots and the consensus shapes approach

    Get PDF
    Reeder J. Algorithms for RNA secondary structure analysis : prediction of pseudoknots and the consensus shapes approach. Bielefeld (Germany): Bielefeld University; 2007.Our understanding of the role of RNA has undergone a major change in the last decade. Once believed to be only a mere carrier of information and structural component of the ribosomal machinery in the advent of the genomic age, it is now clear that RNAs play a much more active role. RNAs can act as regulators and can have catalytic activity - roles previously only attributed to proteins. There is still much speculation in the scientific community as to what extent RNAs are responsible for the complexity in higher organisms which can hardly be explained with only proteins as regulators. In order to investigate the roles of RNA, it is therefore necessary to search for new classes of RNA. For those and already known classes, analyses of their presence in different species of the tree of life will provide further insight about the evolution of biomolecules and especially RNAs. Since RNA function often follows its structure, the need for computer programs for RNA structure prediction is an immanent part of this procedure. The secondary structure of RNA - the level of base pairing - strongly determines the tertiary structure. As the latter is computationally intractable and experimentally expensive to obtain, secondary structure analysis has become an accepted substitute. In this thesis, I present two new algorithms (and a few variations thereof) for the prediction of RNA secondary structures. The first algorithm addresses the problem of predicting a secondary structure from a single sequence including RNA pseudoknots. Pseudoknots have been shown to be functionally relevant in many RNA mediated processes. However, pseudoknots are excluded from considerations by state-of-the-art RNA folding programs for reasons of computational complexity. While folding a sequence of length n into unknotted structures requires O(n^3) time and O(n^2) space, finding the best structure including arbitrary pseudoknots has been proven to be NP-complete. Nevertheless, I demonstrate in this work that certain types of pseudoknots can be included in the folding process with only a moderate increase of computational cost. In analogy to protein coding RNA, where a conserved encoded protein hints at a similar metabolic function, structural conservation in RNA may give clues to RNA function and to finding of RNA genes. However, structure conservation is more complex to deal with computationally than sequence conservation. The method considered to be at least conceptually the ideal approach in this situation is the Sankoff algorithm. It simultaneously aligns two sequences and predicts a common secondary structure. Unfortunately, it is computationally rather expensive - O(n^6) time and O(n^4) space for two sequences, and for more than two sequences it becomes exponential in the number of sequences! Therefore, several heuristic implementations emerged in the last decade trying to make the Sankoff approach practical by introducing pragmatic restrictions on the search space. In this thesis, I propose to redefine the consensus structure prediction problem in a way that does not imply a multiple sequence alignment step. For a family of RNA sequences, my method explicitly and independently enumerates the near-optimal abstract shape space and predicts an abstract shape as the consensus for all sequences. For each sequence, it delivers the thermodynamically best structure which has this shape. The technique of abstract shapes analysis is employed here for a synoptic view of the suboptimal folding space. As the shape space is much smaller than the structure space, and identification of common shapes can be done in linear time (in the number of shapes considered), the method is essentially linear in the number of sequences. Evaluations show that the new method compares favorably with available alternatives

    A Comparative Taxonomy of Parallel Algorithms for RNA Secondary Structure Prediction

    Get PDF
    RNA molecules have been discovered playing crucial roles in numerous biological and medical procedures and processes. RNA structures determination have become a major problem in the biology context. Recently, computer scientists have empowered the biologists with RNA secondary structures that ease an understanding of the RNA functions and roles. Detecting RNA secondary structure is an NP-hard problem, especially in pseudoknotted RNA structures. The detection process is also time-consuming; as a result, an alternative approach such as using parallel architectures is a desirable option. The main goal in this paper is to do an intensive investigation of parallel methods used in the literature to solve the demanding issues, related to the RNA secondary structure prediction methods. Then, we introduce a new taxonomy for the parallel RNA folding methods. Based on this proposed taxonomy, a systematic and scientific comparison is performed among these existing methods

    Efficient pairwise RNA structure prediction and alignment using sequence alignment constraints

    Get PDF
    BACKGROUND: We are interested in the problem of predicting secondary structure for small sets of homologous RNAs, by incorporating limited comparative sequence information into an RNA folding model. The Sankoff algorithm for simultaneous RNA folding and alignment is a basis for approaches to this problem. There are two open problems in applying a Sankoff algorithm: development of a good unified scoring system for alignment and folding and development of practical heuristics for dealing with the computational complexity of the algorithm. RESULTS: We use probabilistic models (pair stochastic context-free grammars, pairSCFGs) as a unifying framework for scoring pairwise alignment and folding. A constrained version of the pairSCFG structural alignment algorithm was developed which assumes knowledge of a few confidently aligned positions (pins). These pins are selected based on the posterior probabilities of a probabilistic pairwise sequence alignment. CONCLUSION: Pairwise RNA structural alignment improves on structure prediction accuracy relative to single sequence folding. Constraining on alignment is a straightforward method of reducing the runtime and memory requirements of the algorithm. Five practical implementations of the pairwise Sankoff algorithm – this work (Consan), David Mathews' Dynalign, Ian Holmes' Stemloc, Ivo Hofacker's PMcomp, and Jan Gorodkin's FOLDALIGN – have comparable overall performance with different strengths and weaknesses

    Software.ncrna.org: web servers for analyses of RNA sequences

    Get PDF
    We present web servers for analysis of non-coding RNA sequences on the basis of their secondary structures. Software tools for structural multiple sequence alignments, structural pairwise sequence alignments and structural motif findings are available from the integrated web server and the individual stand-alone web servers. The servers are located at http://software.ncrna.org, along with the information for the evaluation and downloading. This website is freely available to all users and there is no login requirement

    Graphical methods in RNA structure matching

    Get PDF
    Eukaryotic genomes are pervasively transcribed; almost every base can be found in an RNA transcript. This is a surprising observation since most of the genome does not encode proteins. This RNA must serve an important regulatory function – important because producing non-coding RNA is an energy intensive process, and in the absence of strong selection one would expect it to disappear. RNA families with common functions have specifically conserved structural motifs, which are directly related to the functional roles of RNA in catalysis and regulation. Because the conserved structures depend on base-pairing, similar RNA structures may have little or no detectable sequence similarity, making the identification of conserved RNAs difficult. This is a particularly serious problem when studying regulatory structures in RNA. In many cases, such as that of cellular internal ribosome entry sites, although we can identify RNAs that have similar regulatory responses, it is difficult to tell whether the RNAs have common structural features using current methods. Available tools for identifying common structures based on RNA sequence suffer from one or more of the following problems: they do not consider pseudoknots, which are important in many catalytic and regulatory structures; they do not consider near minimum free energy structures, which is important as many RNAs exist as an ensemble of structures of nearly equal energy; they require many examples of known structures in order to train a computational model; they require impractical amounts of computational time, precluding their use on long sequences or genomic scale; or they use a similarity function that cannot identify RNAs as having similar structure, even when they are from one of the well characterized known classes. The approach presented here has the potential to address all of these issues, allowing novel RNA structures that are shared between RNAs with little or no sequence similarity to be discovered. This provides a powerful tool to investigate and explain the pervasive transcription observed in eukaryotic genomes
    corecore