144 research outputs found

    Broadcast Scheduling Problem in TDMA Ad Hoc Networks using Immune Genetic Algorithm

    Get PDF
    In this paper, a new efficient immune genetic algorithm (IGA) is proposed for broadcast scheduling problem in TDMA Ad hoc network. Broadcast scheduling is a primary issue in wireless ad hoc networks. The objective of a broadcast schedule is to deliver a message from a given source to all other nodes in a minimum amount of time. Broadcast scheduling avoids packet collisions by allowing the nodes transmission that does not make interference of a time division multiple access (TDMA) ad hoc network. It also improves the transmission utilization by assigning one transmission time slot to one or more non-conflicting nodes such a way that every node transmits at least once in each TDMA frame. An optimum transmission schedule could minimize the length of a TDMA frame while maximizing the total number of transmissions. The aim of this paper is to increase the number of transmissions in fixed Ad hoc network with time division multiple access (TDMA) method, with in a reduced time slot. The results of IGA are compared to the recently reported algorithms. The simulation result indicates that IGA performs better even for a larger network

    Machine Learning-Enabled Resource Allocation for Underlay Cognitive Radio Networks

    Get PDF
    Due to the rapid growth of new wireless communication services and applications, much attention has been directed to frequency spectrum resources and the way they are regulated. Considering that the radio spectrum is a natural limited resource, supporting the ever increasing demands for higher capacity and higher data rates for diverse sets of users, services and applications is a challenging task which requires innovative technologies capable of providing new ways of efficiently exploiting the available radio spectrum. Consequently, dynamic spectrum access (DSA) has been proposed as a replacement for static spectrum allocation policies. The DSA is implemented in three modes including interweave, overlay and underlay mode [1]. The key enabling technology for DSA is cognitive radio (CR), which is among the core prominent technologies for the next generation of wireless communication systems. Unlike conventional radio which is restricted to only operate in designated spectrum bands, a CR has the capability to operate in different spectrum bands owing to its ability in sensing, understanding its wireless environment, learning from past experiences and proactively changing the transmission parameters as needed. These features for CR are provided by an intelligent software package called the cognitive engine (CE). In general, the CE manages radio resources to accomplish cognitive functionalities and allocates and adapts the radio resources to optimize the performance of the network. Cognitive functionality of the CE can be achieved by leveraging machine learning techniques. Therefore, this thesis explores the application of two machine learning techniques in enabling the cognition capability of CE. The two considered machine learning techniques are neural network-based supervised learning and reinforcement learning. Specifically, this thesis develops resource allocation algorithms that leverage the use of machine learning techniques to find the solution to the resource allocation problem for heterogeneous underlay cognitive radio networks (CRNs). The proposed algorithms are evaluated under extensive simulation runs. The first resource allocation algorithm uses a neural network-based learning paradigm to present a fully autonomous and distributed underlay DSA scheme where each CR operates based on predicting its transmission effect on a primary network (PN). The scheme is based on a CE with an artificial neural network that predicts the adaptive modulation and coding configuration for the primary link nearest to a transmitting CR, without exchanging information between primary and secondary networks. By managing the effect of the secondary network (SN) on the primary network, the presented technique maintains the relative average throughput change in the primary network within a prescribed maximum value, while also finding transmit settings for the CRs that result in throughput as large as allowed by the primary network interference limit. The second resource allocation algorithm uses reinforcement learning and aims at distributively maximizing the average quality of experience (QoE) across transmission of CRs with different types of traffic while satisfying a primary network interference constraint. To best satisfy the QoE requirements of the delay-sensitive type of traffics, a cross-layer resource allocation algorithm is derived and its performance is compared against a physical-layer algorithm in terms of meeting end-to-end traffic delay constraints. Moreover, to accelerate the learning performance of the presented algorithms, the idea of transfer learning is integrated. The philosophy behind transfer learning is to allow well-established and expert cognitive agents (i.e. base stations or mobile stations in the context of wireless communications) to teach newly activated and naive agents. Exchange of learned information is used to improve the learning performance of a distributed CR network. This thesis further identifies the best practices to transfer knowledge between CRs so as to reduce the communication overhead. The investigations in this thesis propose a novel technique which is able to accurately predict the modulation scheme and channel coding rate used in a primary link without the need to exchange information between the two networks (e.g. access to feedback channels), while succeeding in the main goal of determining the transmit power of the CRs such that the interference they create remains below the maximum threshold that the primary network can sustain with minimal effect on the average throughput. The investigations in this thesis also provide a physical-layer as well as a cross-layer machine learning-based algorithms to address the challenge of resource allocation in underlay cognitive radio networks, resulting in better learning performance and reduced communication overhead

    Advances in Reinforcement Learning

    Get PDF
    Reinforcement Learning (RL) is a very dynamic area in terms of theory and application. This book brings together many different aspects of the current research on several fields associated to RL which has been growing rapidly, producing a wide variety of learning algorithms for different applications. Based on 24 Chapters, it covers a very broad variety of topics in RL and their application in autonomous systems. A set of chapters in this book provide a general overview of RL while other chapters focus mostly on the applications of RL paradigms: Game Theory, Multi-Agent Theory, Robotic, Networking Technologies, Vehicular Navigation, Medicine and Industrial Logistic

    Optimisation of Mobile Communication Networks - OMCO NET

    Get PDF
    The mini conference “Optimisation of Mobile Communication Networks” focuses on advanced methods for search and optimisation applied to wireless communication networks. It is sponsored by Research & Enterprise Fund Southampton Solent University. The conference strives to widen knowledge on advanced search methods capable of optimisation of wireless communications networks. The aim is to provide a forum for exchange of recent knowledge, new ideas and trends in this progressive and challenging area. The conference will popularise new successful approaches on resolving hard tasks such as minimisation of transmit power, cooperative and optimal routing

    Reinforcement Learning

    Get PDF
    Brains rule the world, and brain-like computation is increasingly used in computers and electronic devices. Brain-like computation is about processing and interpreting data or directly putting forward and performing actions. Learning is a very important aspect. This book is on reinforcement learning which involves performing actions to achieve a goal. The first 11 chapters of this book describe and extend the scope of reinforcement learning. The remaining 11 chapters show that there is already wide usage in numerous fields. Reinforcement learning can tackle control tasks that are too complex for traditional, hand-designed, non-learning controllers. As learning computers can deal with technical complexities, the tasks of human operators remain to specify goals on increasingly higher levels. This book shows that reinforcement learning is a very dynamic area in terms of theory and applications and it shall stimulate and encourage new research in this field

    Intelligent Sensor Networks

    Get PDF
    In the last decade, wireless or wired sensor networks have attracted much attention. However, most designs target general sensor network issues including protocol stack (routing, MAC, etc.) and security issues. This book focuses on the close integration of sensing, networking, and smart signal processing via machine learning. Based on their world-class research, the authors present the fundamentals of intelligent sensor networks. They cover sensing and sampling, distributed signal processing, and intelligent signal learning. In addition, they present cutting-edge research results from leading experts

    Multiuser detection employing recurrent neural networks for DS-CDMA systems.

    Get PDF
    Thesis (M.Sc.Eng.)-University of KwaZulu-Natal, 2006.Over the last decade, access to personal wireless communication networks has evolved to a point of necessity. Attached to the phenomenal growth of the telecommunications industry in recent times is an escalating demand for higher data rates and efficient spectrum utilization. This demand is fuelling the advancement of third generation (3G), as well as future, wireless networks. Current 3G technologies are adding a dimension of mobility to services that have become an integral part of modem everyday life. Wideband code division multiple access (WCDMA) is the standardized multiple access scheme for 3G Universal Mobile Telecommunication System (UMTS). As an air interface solution, CDMA has received considerable interest over the past two decades and a great deal of current research is concerned with improving the application of CDMA in 3G systems. A factoring component of CDMA is multiuser detection (MUD), which is aimed at enhancing system capacity and performance, by optimally demodulating multiple interfering signals that overlap in time and frequency. This is a major research problem in multipoint-to-point communications. Due to the complexity associated with optimal maximum likelihood detection, many different sub-optimal solutions have been proposed. This focus of this dissertation is the application of neural networks for MUD, in a direct sequence CDMA (DS-CDMA) system. Specifically, it explores how the Hopfield recurrent neural network (RNN) can be employed to give yet another suboptimal solution to the optimization problem of MUD. There is great scope for neural networks in fields encompassing communications. This is primarily attributed to their non-linearity, adaptivity and key function as data classifiers. In the context of optimum multiuser detection, neural networks have been successfully employed to solve similar combinatorial optimization problems. The concepts of CDMA and MUD are discussed. The use of a vector-valued transmission model for DS-CDMA is illustrated, and common linear sub-optimal MUD schemes, as well as the maximum likelihood criterion, are reviewed. The performance of these sub-optimal MUD schemes is demonstrated. The Hopfield neural network (HNN) for combinatorial optimization is discussed. Basic concepts and techniques related to the field of statistical mechanics are introduced and it is shown how they may be employed to analyze neural classification. Stochastic techniques are considered in the context of improving the performance of the HNN. A neural-based receiver, which employs a stochastic HNN and a simulated annealing technique, is proposed. Its performance is analyzed in a communication channel that is affected by additive white Gaussian noise (AWGN) by way of simulation. The performance of the proposed scheme is compared to that of the single-user matched filter, linear decorrelating and minimum mean-square error detectors, as well as the classical HNN and the stochastic Hopfield network (SHN) detectors. Concluding, the feasibility of neural networks (in this case the HNN) for MUD in a DS-CDMA system is explored by quantifying the relative performance of the proposed model using simulation results and in view of implementation issues
    corecore