2,257 research outputs found

    Automatic detection, tracking and counting of birds in marine video content

    Get PDF
    Robust automatic detection of moving objects in a marine context is a multi-faceted problem due to the complexity of the observed scene. The dynamic nature of the sea caused by waves, boat wakes, and weather conditions poses huge challenges for the development of a stable background model. Moreover, camera motion, reflections, lightning and illumination changes may contribute to false detections. Dynamic background subtraction (DBGS) is widely considered as a solution to tackle this issue in the scope of vessel detection for maritime traffic analysis. In this paper, the DBGS techniques suggested for ships are investigated and optimized for the monitoring and tracking of birds in marine video content. In addition to background subtraction, foreground candidates are filtered by a classifier based on their feature descriptors in order to remove non-bird objects. Different types of classifiers have been evaluated and results on a ground truth labeled dataset of challenging video fragments show similar levels of precision and recall of about 95% for the best performing classifier. The remaining foreground items are counted and birds are tracked along the video sequence using spatio-temporal motion prediction. This allows marine scientists to study the presence and behavior of birds

    An Intelligent Monitoring System of Vehicles on Highway Traffic

    Full text link
    Vehicle speed monitoring and management of highways is the critical problem of the road in this modern age of growing technology and population. A poor management results in frequent traffic jam, traffic rules violation and fatal road accidents. Using traditional techniques of RADAR, LIDAR and LASAR to address this problem is time-consuming, expensive and tedious. This paper presents an efficient framework to produce a simple, cost efficient and intelligent system for vehicle speed monitoring. The proposed method uses an HD (High Definition) camera mounted on the road side either on a pole or on a traffic signal for recording video frames. On the basis of these frames, a vehicle can be tracked by using radius growing method, and its speed can be calculated by calculating vehicle mask and its displacement in consecutive frames. The method uses pattern recognition, digital image processing and mathematical techniques for vehicle detection, tracking and speed calculation. The validity of the proposed model is proved by testing it on different highways.Comment: 5 page

    A comprehensive review of vehicle detection using computer vision

    Get PDF
    A crucial step in designing intelligent transport systems (ITS) is vehicle detection. The challenges of vehicle detection in urban roads arise because of camera position, background variations, occlusion, multiple foreground objects as well as vehicle pose. The current study provides a synopsis of state-of-the-art vehicle detection techniques, which are categorized according to motion and appearance-based techniques starting with frame differencing and background subtraction until feature extraction, a more complicated model in comparison. The advantages and disadvantages among the techniques are also highlighted with a conclusion as to the most accurate one for vehicle detection

    Video analytics for security systems

    Get PDF
    This study has been conducted to develop robust event detection and object tracking algorithms that can be implemented in real time video surveillance applications. The aim of the research has been to produce an automated video surveillance system that is able to detect and report potential security risks with minimum human intervention. Since the algorithms are designed to be implemented in real-life scenarios, they must be able to cope with strong illumination changes and occlusions. The thesis is divided into two major sections. The first section deals with event detection and edge based tracking while the second section describes colour measurement methods developed to track objects in crowded environments. The event detection methods presented in the thesis mainly focus on detection and tracking of objects that become stationary in the scene. Objects such as baggage left in public places or vehicles parked illegally can cause a serious security threat. A new pixel based classification technique has been developed to detect objects of this type in cluttered scenes. Once detected, edge based object descriptors are obtained and stored as templates for tracking purposes. The consistency of these descriptors is examined using an adaptive edge orientation based technique. Objects are tracked and alarm events are generated if the objects are found to be stationary in the scene after a certain period of time. To evaluate the full capabilities of the pixel based classification and adaptive edge orientation based tracking methods, the model is tested using several hours of real-life video surveillance scenarios recorded at different locations and time of day from our own and publically available databases (i-LIDS, PETS, MIT, ViSOR). The performance results demonstrate that the combination of pixel based classification and adaptive edge orientation based tracking gave over 95% success rate. The results obtained also yield better detection and tracking results when compared with the other available state of the art methods. In the second part of the thesis, colour based techniques are used to track objects in crowded video sequences in circumstances of severe occlusion. A novel Adaptive Sample Count Particle Filter (ASCPF) technique is presented that improves the performance of the standard Sample Importance Resampling Particle Filter by up to 80% in terms of computational cost. An appropriate particle range is obtained for each object and the concept of adaptive samples is introduced to keep the computational cost down. The objective is to keep the number of particles to a minimum and only to increase them up to the maximum, as and when required. Variable standard deviation values for state vector elements have been exploited to cope with heavy occlusion. The technique has been tested on different video surveillance scenarios with variable object motion, strong occlusion and change in object scale. Experimental results show that the proposed method not only tracks the object with comparable accuracy to existing particle filter techniques but is up to five times faster. Tracking objects in a multi camera environment is discussed in the final part of the thesis. The ASCPF technique is deployed within a multi-camera environment to track objects across different camera views. Such environments can pose difficult challenges such as changes in object scale and colour features as the objects move from one camera view to another. Variable standard deviation values of the ASCPF have been utilized in order to cope with sudden colour and scale changes. As the object moves from one scene to another, the number of particles, together with the spread value, is increased to a maximum to reduce any effects of scale and colour change. Promising results are obtained when the ASCPF technique is tested on live feeds from four different camera views. It was found that not only did the ASCPF method result in the successful tracking of the moving object across different views but also maintained the real time frame rate due to its reduced computational cost thus indicating that the method is a potential practical solution for multi camera tracking applications

    Vision based surveillance system

    Get PDF
    Due to the numerous amounts of surveillance cameras available, security guards seem to be ubiquitously watching over. However, the number of existing cameras exceeds the number of humans to monitor them and the supervision of all the sensors' output is costly. Thus, video footage from cameras is most often only used as a forensic tool. This suggests the need of an intelligent video surveillance system providing continuous 24-hour monitoring, replacing the traditional ineffective systems. This paper presents an automated vision based surveillance system which is capable to detect and track humans and vehicles from a video footage. Simulation results have shown that the Object Classification module manages to achieve an accuracy of 97.31% and 97.14% for the person and vehicle classification respectively. Furthermore, the system manages to successfully track the objects 97% of the time under no occlusion and 94.14% in presence of occlusion.peer-reviewe
    corecore