1,201 research outputs found

    Optimal dynamic pricing and replenishment policies for deteriorating items

    Get PDF
    Marketing strategies and proper inventory replenishment policies are often incorporated by enterprises to stimulate demand and maximize profit. The aim of this paper is to represent an integrated model for dynamic pricing and inventory control of deteriorating items. To reflect the dynamic characteristic of the problem, the selling price is defined as a time-dependent function of the initial selling price and the discount rate. In this regard, the price is exponentially discounted to compensate negative impact of the deterioration. The planning horizon is assumed to be infinite and the deterioration rate is time-dependent. In addition to price, the demand rate is dependent on advertisement as a powerful marketing tool. Several theoretical results and an iterative solution algorithm are developed to provide the optimal solution. Finally, to show validity of the model and illustrate the solution procedure, numerical results are presented

    Decision support system for vendor managed inventory supply chain:a case study

    Get PDF
    Vendor-managed inventory (VMI) is a widely used collaborative inventory management policy in which manufacturers manages the inventory of retailers and takes responsibility for making decisions related to the timing and extent of inventory replenishment. VMI partnerships help organisations to reduce demand variability, inventory holding and distribution costs. This study provides empirical evidence that significant economic benefits can be achieved with the use of a genetic algorithm (GA)-based decision support system (DSS) in a VMI supply chain. A two-stage serial supply chain in which retailers and their supplier are operating VMI in an uncertain demand environment is studied. Performance was measured in terms of cost, profit, stockouts and service levels. The results generated from GA-based model were compared to traditional alternatives. The study found that the GA-based approach outperformed traditional methods and its use can be economically justified in small- and medium-sized enterprises (SMEs)

    A Metaheuristic-Based Simulation Optimization Framework For Supply Chain Inventory Management Under Uncertainty

    Get PDF
    The need for inventory control models for practical real-world applications is growing with the global expansion of supply chains. The widely used traditional optimization procedures usually require an explicit mathematical model formulated based on some assumptions. The validity of such models and approaches for real world applications depend greatly upon whether the assumptions made match closely with the reality. The use of meta-heuristics, as opposed to a traditional method, does not require such assumptions and has allowed more realistic modeling of the inventory control system and its solution. In this dissertation, a metaheuristic-based simulation optimization framework is developed for supply chain inventory management under uncertainty. In the proposed framework, any effective metaheuristic can be employed to serve as the optimizer to intelligently search the solution space, using an appropriate simulation inventory model as the evaluation module. To be realistic and practical, the proposed framework supports inventory decision-making under supply-side and demand-side uncertainty in a supply chain. The supply-side uncertainty specifically considered includes quality imperfection. As far as demand-side uncertainty is concerned, the new framework does not make any assumption on demand distribution and can process any demand time series. This salient feature enables users to have the flexibility to evaluate data of practical relevance. In addition, other realistic factors, such as capacity constraints, limited shelf life of products and type-compatible substitutions are also considered and studied by the new framework. The proposed framework has been applied to single-vendor multi-buyer supply chains with the single vendor facing the direct impact of quality deviation and capacity constraint from its supplier and the buyers facing demand uncertainty. In addition, it has been extended to the supply chain inventory management of highly perishable products. Blood products with limited shelf life and ABO compatibility have been examined in detail. It is expected that the proposed framework can be easily adapted to different supply chain systems, including healthcare organizations. Computational results have shown that the proposed framework can effectively assess the impacts of different realistic factors on the performance of a supply chain from different angles, and to determine the optimal inventory policies accordingly
    • …
    corecore