830 research outputs found

    A global method for music symbol recognition in typeset music sheets

    Get PDF
    International audienceThis paper presents an optical music recognition (OMR) system that can automatically recognize the main musical symbols of a scanned paper-based music score. Two major stages are distinguished: the first one, using low-level pre-processing, detects the isolated objects and outputs some hypotheses about them; the second one has to take the final correct decision, through high-level processing including contextual information and music writing rules. This article exposes both stages of the method: after explaining in detail the first one, the symbol analysis process, it shows through first experiments that its outputs can efficiently be used as inputs for a high-level decision process

    Understanding Optical Music Recognition

    Get PDF
    For over 50 years, researchers have been trying to teach computers to read music notation, referred to as Optical Music Recognition (OMR). However, this field is still difficult to access for new researchers, especially those without a significant musical background: Few introductory materials are available, and, furthermore, the field has struggled with defining itself and building a shared terminology. In this work, we address these shortcomings by (1) providing a robust definition of OMR and its relationship to related fields, (2) analyzing how OMR inverts the music encoding process to recover the musical notation and the musical semantics from documents, and (3) proposing a taxonomy of OMR, with most notably a novel taxonomy of applications. Additionally, we discuss how deep learning affects modern OMR research, as opposed to the traditional pipeline. Based on this work, the reader should be able to attain a basic understanding of OMR: its objectives, its inherent structure, its relationship to other fields, the state of the art, and the research opportunities it affords

    Music symbol recognition

    Get PDF
    This paper focuses on optical music recognition (OMR) system that recognizes the musical symbols on a digitized music sheet and converts them into symbolic music representation. Two main stages are distinguished ? pre-processing and symbol analysis. In the pre-processing stage, staves are detected and removed; while in the symbol analysis stage, each musical symbol is recognized and analyzed. The musical semantics are then determined and converted into symbolic music representation stored in text form

    Optical Music Recognition: State of the Art and Major Challenges

    Get PDF
    Optical Music Recognition (OMR) is concerned with transcribing sheet music into a machine-readable format. The transcribed copy should allow musicians to compose, play and edit music by taking a picture of a music sheet. Complete transcription of sheet music would also enable more efficient archival. OMR facilitates examining sheet music statistically or searching for patterns of notations, thus helping use cases in digital musicology too. Recently, there has been a shift in OMR from using conventional computer vision techniques towards a deep learning approach. In this paper, we review relevant works in OMR, including fundamental methods and significant outcomes, and highlight different stages of the OMR pipeline. These stages often lack standard input and output representation and standardised evaluation. Therefore, comparing different approaches and evaluating the impact of different processing methods can become rather complex. This paper provides recommendations for future work, addressing some of the highlighted issues and represents a position in furthering this important field of research

    Proceedings of the 4th International Workshop on Reading Music Systems

    Full text link
    The International Workshop on Reading Music Systems (WoRMS) is a workshop that tries to connect researchers who develop systems for reading music, such as in the field of Optical Music Recognition, with other researchers and practitioners that could benefit from such systems, like librarians or musicologists. The relevant topics of interest for the workshop include, but are not limited to: Music reading systems; Optical music recognition; Datasets and performance evaluation; Image processing on music scores; Writer identification; Authoring, editing, storing and presentation systems for music scores; Multi-modal systems; Novel input-methods for music to produce written music; Web-based Music Information Retrieval services; Applications and projects; Use-cases related to written music. These are the proceedings of the 4th International Workshop on Reading Music Systems, held online on Nov. 18th 2022.Comment: Proceedings edited by Jorge Calvo-Zaragoza, Alexander Pacha and Elona Shatr

    Integration of Language Models in Sequence to Sequence Optical Music Recognition Systems

    Get PDF
    El present projecte és un estudi del potencial d'integrar per mitjà de diverses tècniques un model de llenguatge a un sistema de Reconeixement Òptic de Partitures (OMR) basat en una arquitectura Sequence to Sequence. L'objectiu és millorar el rendiment del model sobre partitures manuscrites antigues, que són especialment complexes d'interpretar a causa del seu elevat grau de variabilitat i les distorsions que solen incorporar.The following project is a study of the potential of integrating a language model into a Sequence to Sequence-based Optical Music Recognition (OMR) system through various techniques. The goal is to improve the performance of the model on handwritten old music scores, whose interpretation is particularly error-prone due to their high degree of variability and distortion.El presente proyecto es un estudio del potencial de integrar por medio de varias técnicas un modelo de lenguaje a un sistema de Reconocimiento Óptico de Partituras (OMR) basado en una arquitectura Sequence to Sequence. El objetivo es mejorar el rendimiento del modelo sobre partituras manuscritas antiguas, que son especialmente complicadas de interpretar a causa de su elevado grado de variabilidad y las distorsiones que suelen incorporar

    Decoupling music notation to improve end-to-end Optical Music Recognition

    Get PDF
    Inspired by the Text Recognition field, end-to-end schemes based on Convolutional Recurrent Neural Networks (CRNN) trained with the Connectionist Temporal Classification (CTC) loss function are considered one of the current state-of-the-art techniques for staff-level Optical Music Recognition (OMR). Unlike text symbols, music-notation elements may be defined as a combination of (i) a shape primitive located in (ii) a certain position in a staff. However, this double nature is generally neglected in the learning process, as each combination is treated as a single token. In this work, we study whether exploiting such particularity of music notation actually benefits the recognition performance and, if so, which approach is the most appropriate. For that, we thoroughly review existing specific approaches that explore this premise and propose different combinations of them. Furthermore, considering the limitations observed in such approaches, a novel decoding strategy specifically designed for OMR is proposed. The results obtained with four different corpora of historical manuscripts show the relevance of leveraging this double nature of music notation since it outperforms the standard approaches where it is ignored. In addition, the proposed decoding leads to significant reductions in the error rates with respect to the other cases.This paper is part of the project I+D+i PID2020-118447RA-I00 (MultiScore), funded by MCIN/AEI/10.13039/501100011033. The first author is supported by grant FPU19/04957 from the Spanish Ministerio de Universidades. The second author is supported by grant ACIF/2021/356 from “Programa I+D+i de la Generalitat Valenciana“. The third author is supported by grant APOSTD/2020/256 from “Programa I+D+i de la Generalitat Valenciana”

    Exploiting the Two-Dimensional Nature of Agnostic Music Notation for Neural Optical Music Recognition

    Get PDF
    State-of-the-art Optical Music Recognition (OMR) techniques follow an end-to-end or holistic approach, i.e., a sole stage for completely processing a single-staff section image and for retrieving the symbols that appear therein. Such recognition systems are characterized by not requiring an exact alignment between each staff and their corresponding labels, hence facilitating the creation and retrieval of labeled corpora. Most commonly, these approaches consider an agnostic music representation, which characterizes music symbols by their shape and height (vertical position in the staff). However, this double nature is ignored since, in the learning process, these two features are treated as a single symbol. This work aims to exploit this trademark that differentiates music notation from other similar domains, such as text, by introducing a novel end-to-end approach to solve the OMR task at a staff-line level. We consider two Convolutional Recurrent Neural Network (CRNN) schemes trained to simultaneously extract the shape and height information and to propose different policies for eventually merging them at the actual neural level. The results obtained for two corpora of monophonic early music manuscripts prove that our proposal significantly decreases the recognition error in figures ranging between 14.4% and 25.6% in the best-case scenarios when compared to the baseline considered.This research work was partially funded by the University of Alicante through project GRE19-04, by the “Programa I+D+i de la Generalitat Valenciana” through grant APOSTD/2020/256, and by the Spanish Ministerio de Universidades through grant FPU19/04957
    corecore