1,985 research outputs found

    Distributed Big-Data Optimization via Block-Iterative Convexification and Averaging

    Full text link
    In this paper, we study distributed big-data nonconvex optimization in multi-agent networks. We consider the (constrained) minimization of the sum of a smooth (possibly) nonconvex function, i.e., the agents' sum-utility, plus a convex (possibly) nonsmooth regularizer. Our interest is in big-data problems wherein there is a large number of variables to optimize. If treated by means of standard distributed optimization algorithms, these large-scale problems may be intractable, due to the prohibitive local computation and communication burden at each node. We propose a novel distributed solution method whereby at each iteration agents optimize and then communicate (in an uncoordinated fashion) only a subset of their decision variables. To deal with non-convexity of the cost function, the novel scheme hinges on Successive Convex Approximation (SCA) techniques coupled with i) a tracking mechanism instrumental to locally estimate gradient averages; and ii) a novel block-wise consensus-based protocol to perform local block-averaging operations and gradient tacking. Asymptotic convergence to stationary solutions of the nonconvex problem is established. Finally, numerical results show the effectiveness of the proposed algorithm and highlight how the block dimension impacts on the communication overhead and practical convergence speed

    Differentially Private Distributed Optimization

    Full text link
    In distributed optimization and iterative consensus literature, a standard problem is for NN agents to minimize a function ff over a subset of Euclidean space, where the cost function is expressed as a sum fi\sum f_i. In this paper, we study the private distributed optimization (PDOP) problem with the additional requirement that the cost function of the individual agents should remain differentially private. The adversary attempts to infer information about the private cost functions from the messages that the agents exchange. Achieving differential privacy requires that any change of an individual's cost function only results in unsubstantial changes in the statistics of the messages. We propose a class of iterative algorithms for solving PDOP, which achieves differential privacy and convergence to the optimal value. Our analysis reveals the dependence of the achieved accuracy and the privacy levels on the the parameters of the algorithm. We observe that to achieve ϵ\epsilon-differential privacy the accuracy of the algorithm has the order of O(1ϵ2)O(\frac{1}{\epsilon^2})

    Distributed optimization over time-varying directed graphs

    Full text link
    We consider distributed optimization by a collection of nodes, each having access to its own convex function, whose collective goal is to minimize the sum of the functions. The communications between nodes are described by a time-varying sequence of directed graphs, which is uniformly strongly connected. For such communications, assuming that every node knows its out-degree, we develop a broadcast-based algorithm, termed the subgradient-push, which steers every node to an optimal value under a standard assumption of subgradient boundedness. The subgradient-push requires no knowledge of either the number of agents or the graph sequence to implement. Our analysis shows that the subgradient-push algorithm converges at a rate of O(ln(t)/t)O(\ln(t)/\sqrt{t}), where the constant depends on the initial values at the nodes, the subgradient norms, and, more interestingly, on both the consensus speed and the imbalances of influence among the nodes
    corecore