3,863 research outputs found

    The Physical Role of Gravitational and Gauge Degrees of Freedom in General Relativity - I: Dynamical Synchronization and Generalized Inertial Effects

    Get PDF
    This is the first of a couple of papers in which, by exploiting the capabilities of the Hamiltonian approach to general relativity, we get a number of technical achievements that are instrumental both for a disclosure of \emph{new} results concerning specific issues, and for new insights about \emph{old} foundational problems of the theory. The first paper includes: 1) a critical analysis of the various concepts of symmetry related to the Einstein-Hilbert Lagrangian viewpoint on the one hand, and to the Hamiltonian viewpoint, on the other. This analysis leads, in particular, to a re-interpretation of {\it active} diffeomorphisms as {\it passive and metric-dependent} dynamical symmetries of Einstein's equations, a re-interpretation which enables to disclose the (nearly unknown) connection of a subgroup of them to Hamiltonian gauge transformations {\it on-shell}; 2) a re-visitation of the canonical reduction of the ADM formulation of general relativity, with particular emphasis on the geometro-dynamical effects of the gauge-fixing procedure, which amounts to the definition of a \emph{global (non-inertial) space-time laboratory}. This analysis discloses the peculiar \emph{dynamical nature} that the traditional definition of distant simultaneity and clock-synchronization assume in general relativity, as well as the {\it gauge relatedness} of the "conventions" which generalize the classical Einstein's convention.Comment: 45 pages, Revtex4, some refinements adde

    Efficiency optimization and symmetry-breaking in a model of ciliary locomotion

    Full text link
    A variety of swimming microorganisms, called ciliates, exploit the bending of a large number of small and densely-packed organelles, termed cilia, in order to propel themselves in a viscous fluid. We consider a spherical envelope model for such ciliary locomotion where the dynamics of the individual cilia are replaced by that of a continuous overlaying surface allowed to deform tangentially to itself. Employing a variational approach, we determine numerically the time-periodic deformation of such surface which leads to low-Reynolds locomotion with minimum rate of energy dissipation (maximum efficiency). Employing both Lagrangian and Eulerian points of views, we show that in the optimal swimming stroke, individual cilia display weak asymmetric beating, but that a significant symmetry-breaking occurs at the organism level, with the whole surface deforming in a wave-like fashion reminiscent of metachronal waves of biological cilia. This wave motion is analyzed using a formal modal decomposition, is found to occur in the same direction as the swimming direction, and is interpreted as due to a spatial distribution of phase-differences in the kinematics of individual cilia. Using additional constrained optimizations, as well as a constructed analytical ansatz, we derive a complete optimization diagram where all swimming efficiencies, swimming speeds, and amplitude of surface deformation can be reached, with the mathematically optimal swimmer, of efficiency one half, being a singular limit. Biologically, our work suggests therefore that metachronal waves may allow cilia to propel cells forward while reducing the energy dissipated in the surrounding fluid.Comment: 29 pages, 20 figure

    Brane Induced Gravity: From a No-Go to a No-Ghost Theorem

    Full text link
    Numerous claims in the literature suggest that gravity induced on a higher co-dimensional surface violates unitarity in the weak coupling regime. However, it remained unclear, why a conserved source localized on this surface and giving rise to an induced gravity term at low energies would absorb and emit the associated ghost, given a consistent source-free theory. In this article it is shown that the appearance of the induced Einstein Hilbert term does not threaten the unitarity of the theory. The physics arguments behind this statement are presented in a semi-covariant language, but the detailed proof is given using Dirac's constraint analysis. It is shown that the would-be ghost highlighted in previous works is non-dynamical and therefore not associated with a state in the Hilbert space. As a result of these investigations, brane induced gravity goes without a ghost, opening an exciting window of opportunity for consistent deformations of gravity at the largest observable distances.Comment: 13 pages, v2: matches version published in Physical Review

    Classical and Quantum Evolutions of the de Sitter and the anti-de Sitter Universes in 2+1 dimensions

    Full text link
    Two canonical formulations of the Einstein gravity in 2+1 dimensions, namely, the ADM formalism and the Chern-Simons gravity, are investigated in the case of nonvanishing cosmological constant. General arguments for reducing phase spaces of the two formalisms are given when spatial hypersurface is compact. In particular when the space has the topology of a sphere S2S^{2} or a torus T2T^{2}, the spacetimes constructed from these two formulations can be identified and the classical equivalence between the ADM and the CSG is shown. Moreover in the g=1g=1 case the relations between their phase spaces, and therefore between their quantizations, are given in almost the same form as that in the case when the cosmological constant vanishes. There are, however, some modifications, the most remarkable one of which is that the phase space of the CSG is in 1 to 2 correspondence with the one of the ADM when the cosmological constant is negative.Comment: 37pages Latex (6 figures not included

    Integrable theories and loop spaces: fundamentals, applications and new developments

    Get PDF
    We review our proposal to generalize the standard two-dimensional flatness construction of Lax-Zakharov-Shabat to relativistic field theories in d+1 dimensions. The fundamentals from the theory of connections on loop spaces are presented and clarified. These ideas are exposed using mathematical tools familiar to physicists. We exhibit recent and new results that relate the locality of the loop space curvature to the diffeomorphism invariance of the loop space holonomy. These result are used to show that the holonomy is abelian if the holonomy is diffeomorphism invariant. These results justify in part and set the limitations of the local implementations of the approach which has been worked out in the last decade. We highlight very interesting applications like the construction and the solution of an integrable four dimensional field theory with Hopf solitons, and new integrability conditions which generalize BPS equations to systems such as Skyrme theories. Applications of these ideas leading to new constructions are implemented in theories that admit volume preserving diffeomorphisms of the target space as symmetries. Applications to physically relevant systems like Yang Mills theories are summarized. We also discuss other possibilities that have not yet been explored.Comment: 64 pages, 8 figure

    Special Geometry of Euclidean Supersymmetry I: Vector Multiplets

    Full text link
    We construct the general action for Abelian vector multiplets in rigid 4-dimensional Euclidean (instead of Minkowskian) N=2 supersymmetry, i.e., over space-times with a positive definite instead of a Lorentzian metric. The target manifolds for the scalar fields turn out to be para-complex manifolds endowed with a particular kind of special geometry, which we call affine special para-Kahler geometry. We give a precise definition and develop the mathematical theory of such manifolds. The relation to the affine special Kahler manifolds appearing in Minkowskian N=2 supersymmetry is discussed. Starting from the general 5-dimensional vector multiplet action we consider dimensional reduction over time and space in parallel, providing a dictionary between the resulting Euclidean and Minkowskian theories. Then we reanalyze supersymmetry in four dimensions and find that any (para-)holomorphic prepotential defines a supersymmetric Lagrangian, provided that we add a specific four-fermion term, which cannot be obtained by dimensional reduction. We show that the Euclidean action and supersymmetry transformations, when written in terms of para-holomorphic coordinates, take exactly the same form as their Minkowskian counterparts. The appearance of a para-complex and complex structure in the Euclidean and Minkowskian theory, respectively, is traced back to properties of the underlying R-symmetry groups. Finally, we indicate how our work will be extended to other types of multiplets and to supergravity in the future and explain the relevance of this project for the study of instantons, solitons and cosmological solutions in supergravity and M-theory.Comment: 74 page

    Spontaneous breakdown of Lorentz symmetry in scalar QED with higher order derivatives

    Full text link
    Scalar QED is studied with higher order derivatives for the scalar field kinetic energy. A local potential is generated for the gauge field due to the covariant derivatives and the vacuum with non-vanishing expectation value for the scalar field and the vector potential is constructed in the leading order saddle point expansion. This vacuum breaks the global gauge and Lorentz symmetry spontaneously. The unitarity of time evolution is assured in the physical, positive norm subspace and the linearized equations of motion are calculated. Goldstone theorem always keeps the radiation field massless. A particular model is constructed where the the full set of standard Maxwell equations is recovered on the tree level thereby relegating the effects of broken Lorentz symmetry to the level of radiative corrections.Comment: 14 pages, to appear in Phys. Rev.
    • 

    corecore