3,384 research outputs found

    A geometrical approach to the motion planning problem for a submerged rigid body

    Get PDF
    The main focus of this paper is the motion planning problem for a deeply submerged rigid body. The equations of motion are formulated and presented by use of the framework of differential geometry and these equations incorporate external dissipative and restoring forces. We consider a kinematic reduction of the affine connection control system for the rigid body submerged in an ideal fluid, and present an extension of this reduction to the forced affine connection control system for the rigid body submerged in a viscous fluid. The motion planning strategy is based on kinematic motions; the integral curves of rank one kinematic reductions. This method is of particular interest to autonomous underwater vehicles which can not directly control all six degrees of freedom (such as torpedo shaped AUVs) or in case of actuator failure (i.e., under-actuated scenario). A practical example is included to illustrate our technique

    Physical Vulnerability Assessment Based on Fluid and Classical Mechanics to Support Cost-Benefit Analysis of Flood Risk Mitigation Strategies

    Get PDF
    The impacts of flood events that occurred in autumn 2011 in the Italian regions of Liguria and Tuscany revived the engagement of the public decision-maker to enhance the synergy of flood control and land use planning. In this context, the design of efficient flood risk mitigation strategies and their subsequent implementation critically relies on a careful vulnerability analysis of the fixed and mobile elements exposed to flood hazard. In this paper we develop computation schemes enabling dynamic vulnerability and risk analyses for a broad typological variety of elements at risk. To show their applicability, a series of prime examples are discussed in detail, e.g. a bridge deck impacted by the flood and a car, first displaced and subsequently exposed to collision with fixed objects. We hold the view that it is essential that the derivation of the computational schemes to assess the vulnerability of endangered objects should be based on classical and fluid mechanics. In such a way, we aim to complement from a methodological perspective the existing, mainly empirical, vulnerability and risk assessment approaches and to support the design of effective flood risk mitigation strategies by defusing the main criticalities within the systems prone to flood risk

    Modal analysis of a spinning disk in a dense fluid as a model for high head hydraulic turbines

    Full text link
    In high head Francis turbines and pump-turbines in particular, Rotor Stator Interaction (RSI) is an unavoidable source of excitation that needs to be predicted accurately. Precise knowledge of turbine dynamic characteristics, notably the variation of the rotor natural frequencies with rotation speed and added mass of the surrounding water, is essential to assess potential resonance and resulting amplification of vibrations. In these machines, the disk-like structures of the runner crown and band as well as the head cover and bottom ring give rise to the emergence of diametrical modes and a mode split phenomenon for which no efficient prediction method exists to date. Fully coupled Fluid-Structure Interaction (FSI) methods are too computationally expensive; hence, we seek a simplified modelling tool for the design and the expected-life prediction of these turbines. We present the development of both an analytical modal analysis based on the assumed mode approach and potential flow theory, and a modal force Computational Fluid Dynamics (CFD) approach for rotating disks in dense fluid. Both methods accurately predict the natural frequency split as well as the natural frequency drift within 7.9% of the values measured experimentally. The analytical model explains how mode split and drift are respectively caused by linear and quadratic dependence of the added mass with relative circumferential velocity between flexural waves and fluid rotation

    Hydrodynamic analysis and optimization of a hinged-type wave energy converter - SeaWEED

    Get PDF
    This thesis presents the experimental, numerical and optimization studies on a hinged-type wave energy converter, SeaWEED (SeaWave Energy Extraction Device), developed by Grey Island Energy. The device is considered as an improved attenuator consisting of four modules connected by adjustable truss structures. Extensive model tests of a 1:35 scale SeaWEED model with and without the power-take-off (PTO) units have been conducted at the towing tank of Memorial University (MUN). Friction dampers were designed to mimic the PTO systems. Repeated tests were carried out at a few wave frequencies around the region with maximum responses, and good repeatability has been observed. Potential-flow based time- and frequency- domain programs utilizing the Lagrange multiplier approach have been developed to simulate the dynamics of SeaWEED. In the time-domain program, nonlinear Froude-Krylov forces are calculated over the instantaneous wetted surfaces of the bodies under the wave profile, and the Wheeler Stretching method is applied to compute the wave pressure. The numerical results are compared with the experimental data, and good agreement is achieved. Optimization studies have been further conducted utilizing the frequency-domain program. Various parameters, including damping coefficients of the PTO systems, lengths of truss structures and the draft of the device, are considered. The uniform design method is used for sampling, and the response surface method is employed for surrogate construction. The desirability optimization method is utilized to optimize the response. An optimal combination of parameters is determined for an intended operation site

    A Dynamic Manipulation Strategy for an Intervention Autonomous Underwater Vehicle

    Get PDF
    This paper presents the modelling and the control architecture of an Autonomous Underwater Vehicle for Intervention (I-AUV). Autonomous underwater manipulation with free-floating base is still an open topic of research, far from reaching an industrial product. Dynamic manipulation tasks, where relevant vehicle velocities are required during manipulation, over an additional challenge. In this paper, the accurate modelling of an I-AUV is described, not neglecting the interaction with the fluid. A grasp planning strategy is proposed and integrated in the control of the whole system. The performances of the I-AUV have been analysed by means of simulations of a dynamic manipulation task

    통합형 무인 수상선-케이블-수중선 시스템의 다물체동역학 거동 및 제어

    Get PDF
    Underwater exploration is becoming more and more important, since a vast range of unknown resources in the deep ocean remain undeveloped. This dissertation thus presents a modeling of the coupled dynamics of an Unmanned Surface Vehicle (USV) system with an Underwater Vehicles (UV) connected by an underwater cable (UC). The complexity of this multi-body dynamics system and ocean environments is very difficult to model. First, for modeling this, dynamics analysis was performed on each subsystem and further total coupled system dynamics were studied. The UV which is towed by a UC is modeled with 6-DOF equations of motion that reflects its hydrodynamic characteristic was studied. The 4th-order Runge–Kutta numerical method was used to analyze the motion of the USV with its hydrodynamic coefficients which were obtained through experiments and from the literature. To analyze the effect of the UC, the complicated nonlinear and coupled UC dynamics under currents forces, the governing equations of the UC dynamics are established based on the catenary equation method, then it is solved by applying the shooting method. The new formulation and solution of the UC dynamics yields the three dimensional position and forces of the UC end point under the current forces. Also, the advantage of the proposed method is that the catenary equations using shooting method can be solved in real time such that the calculated position and forces of UC according to time can be directly utilized to calculate the UV motion. The proposed method offers advantages of simple formulation, convenient use, and fast calculation time with exact result. Some simple numerical simulations were conducted to observe the dynamic behaviors of AUV with cable effects. The simulations results clearly reveal that the UC can greatly influence the motions of the vehicles, especially on the UV motions. Based on both the numerical model and simulation results developed in the dissertation, we may offer some valuable information for the operation of the UV and USV. Secondly, for the design controller, a PD controller and its application to automatic berthing control of USV are also studied. For this, a nonlinear mathematical model for the maneuvering of USV in the presence of environmental forces was firstly established. Then, in order to control rudder and propeller during automatic berthing process, a PD control algorithm is applied. The algorithm consists of two parts, the forward velocity control and heading angle control. The control algorithm was designed based on the longitudinal and yaw dynamic models of USV. The desired heading angle was obtained by the so-called “Line of Sight” method. To support the validity of the proposed method, the computer simulations of automatic USV berthing are carried out. The results of simulation showed good performance of the developed berthing control system. Also, a hovering-type AUV equipped with multiple thrusters should maintain the specified position and orientation in order to perform given tasks by applying a dynamic positioning (DP) system. Besides, the control allocation algorithm based on a scaling factor is presented for distributing the forces required by the control law onto the available set of actuators in the most effective and energy efficient way. Thus, it is necessary for the robust control algorithm to conduct successfully given missions in spite of a model uncertainty and a disturbance. In this dissertation, the robust DP control algorithm based on a sliding mode theory is also addressed to guarantee the stability and better performance despite the model uncertainty and disturbance of current and cable effects. Finally, a series of simulations are conducted to verify the availability of the generated trajectories and performance of the designed robust controller. Thirdly, for the navigation of UV, a method for designing the path tracking controller using a Rapidly-exploring Random Trees (RRT) algorithm is proposed. The RRT algorithm is firstly used for the generation of collision free waypoints. Next, the unnecessary waypoints are removed by a simple path pruning algorithm generating a piecewise linear path. After that, a path smoothing algorithm utilizing cubic Bezier spiral curves to generate a continuous curvature path that satisfies the minimum radius of curvature constraint of underwater is implemented. The angle between two waypoints is the only information required for the generation of the continuous curvature path. In order to underwater vehicle follow the reference path, the path tracking controller using the global Sliding Mode Control (SMC) approach is designed. To verify the performance of the proposed algorithm, some simulation results are performed. Simulation results showed that the RRT algorithm could be applied to generate an optimal path in a complex ocean environment with multiple obstacles.Acknowledgement .................................................................................................. vi Abstract……. ....................................................................................... ………….viii Nomenclature ....................................................................................................... xvi List of Abbreviations ........................................................................................... xxi List of Tables ...................................................................................................... xxiii List of Figures ..................................................................................................... xxiv Chapter 1: Introduction ......................................................................................... 1 1.1 Background .................................................................................................. 1 1.1.1 Unmanned Surface Vehicles (USVs) ...................................................... 1 1.1.2 Umbilical Cable ....................................................................................... 4 1.1.3 Unmanned Underwater Vehicles (UUVs) ............................................... 5 1.1.4 Literature on Modeling of Marine Vehicles ............................................ 9 1.1.5 Literature on Control and Guidance of Marine Vehicles ...................... 11 1.2 Our System Architecture ........................................................................... 12 1.3 Motivation ................................................................................................. 13 1.4 Contribution ............................................................................................... 16 1.5 Publications Associated to the Dissertation .............................................. 17 1.6 Structure of the Dissertation ...................................................................... 18 Chapter 2: Mathematical Model of Unmanned Surface Vehicle (USV) ......... 20 2.1 Basic Assumptions .................................................................................... 20 2.2 Three Coordinate Systems ......................................................................... 20 2.3 Variable Notation ...................................................................................... 22 2.4 Kinematics ................................................................................................. 23 2.5 Kinetics ...................................................................................................... 26 2.5.1 Rigid Body Equations of Motion ........................................................... 26 2.5.2 Hydrodynamic Forces and Moments ..................................................... 28 2.5.3 Restoring Forces and Moments ............................................................. 31 2.5.4 Environmental Disturbances .................................................................. 32 2.5.5 Propulsion Forces and Moments ........................................................... 35 2.6 Nonlinear 6DOF Dynamics ....................................................................... 35 2.7 Mathematical Model of USV in 3 DOF .................................................... 36 2.7.1 Planar Kinematics .................................................................................. 36 2.7.2 Planar Nonlinear 3 DOF Dynamics ....................................................... 38 2.8 Configuration of Thrusters ........................................................................ 40 2.9 General Structure and Model Parameters .................................................. 41 2.9.1 Structure of USV ................................................................................... 41 2.9.2 Control System of USV ......................................................................... 42 2.9.3 Winch Control System ........................................................................... 43 Chapter 3: Mathematical Model of the Umbilical Cable (UC) ........................ 45 3.1 Basic Assumptions for UC ........................................................................ 45 3.2 Analysis on Forces of UV ......................................................................... 47 3.3 Relation for UC Equilibrium ..................................................................... 50 3.4 Catenary Equation in the Space Case ........................................................ 51 3.5 Shooting Method ....................................................................................... 55 3.6 Boundary Conditions ................................................................................. 57 3.7 Cable Effects ............................................................................................. 58 3.8 Model Parameters and Simulation ............................................................. 59 Chapter 4: Mathematical Model of Underwater Vehicle (UV) ........................ 63 4.1 Background ................................................................................................ 63 4.1.1 Basic Assumptions................................................................................. 63 4.1.2 Reference Frames .................................................................................. 64 4.1.3 Notations ................................................................................................ 65 4.2 Kinematics Equations ................................................................................ 66 4.3 Kinetic Equations ...................................................................................... 67 4.3.1 Rigid-Body Kinetics .............................................................................. 67 4.3.2 Hydrostatic Terms ................................................................................. 69 4.3.3 Hydrodynamic Terms ............................................................................ 70 4.3.4 Actuator Modeling ................................................................................. 75 4.3.5 Umbilical Cable Forces ......................................................................... 75 4.4 Nonlinear Equations of Motion (6DOF) ................................................... 76 4.5 Simplification of UV Dynamic Model ...................................................... 77 4.5.1 Simplifying the Mass and Inertia Matrix ............................................... 78 4.5.2 Simplifying the Hydrodynamic Damping Matrix.................................. 79 4.5.3 Simplifying the Gravitational and Buoyancy Vector ............................ 80 4.6 Thruster Modeling ..................................................................................... 80 4.7 Current Modeling ...................................................................................... 83 4.8 Dynamic Model Including Ocean Currents ............................................... 84 4.9 Complete Motion Equations of AUV (6DOF) .......................................... 89 4.10 Dynamics Model Parameter Identification ................................................ 91 4.11 Numerical Solution for Equations of Motion ............................................ 93 4.12 General Structure and Model Parameters .................................................. 94 4.12.1 Structure of AUV ............................................................................... 94 4.12.2 Control System of AUV ..................................................................... 96 Chapter 5: Guidance Theory ............................................................................... 97 5.1 Configuration of GNC System .................................................................. 97 5.1.1 Guidance ................................................................................................ 98 5.1.2 Navigation .............................................................................................. 98 5.1.3 Control ................................................................................................... 98 5.2 Maneuvering Problem Statement .............................................................. 99 5.3 Guidance Objectives ................................................................................ 100 5.3.1 Target Tracking ................................................................................... 100 5.3.2 Trajectory Tracking ............................................................................. 100 5.4 Waypoint Representation ........................................................................ 101 5.5 Path Following ......................................................................................... 102 5.6 Line of Sight (LOS) Waypoint Guidance ................................................ 102 5.6.1 Enclosure-Based Steering .................................................................... 104 5.6.2 Look-ahead Based Steering ................................................................. 105 5.6.3 LOS Control......................................................................................... 106 5.7 Cubic Polynomial for Path-Following ..................................................... 107 Chapter 6: Control Algorithm Design and Analysis ....................................... 110 6.1 Proportional Integral Differential (PID) Controller ................................ 110 6.1.1 General Theory .................................................................................... 110 6.1.2 Stability of General PID Controller ..................................................... 112 6.1.3 PID Tuning .......................................................................................... 114 6.1.4 Nonlinear PID for Marine Vehicles ..................................................... 116 6.1.5 Nonlinear PD for Marine Vehicles ...................................................... 117 6.1.6 Stability of Designed PD Controller .................................................... 117 6.2 Sliding Mode Controller .......................................................................... 118 6.2.1 Tracking Error and Sliding Surface ..................................................... 119 6.2.2 Chattering Situation ............................................................................. 120 6.2.3 Control Law and Stability .................................................................... 121 6.3 Allocation Control ................................................................................... 124 6.3.1 Linear Quadratic Unconstrained Control Allocation Using Lagrange Multipliers ................................................................................................ 125 6.3.2 Thruster Allocation with a Constrained Linear Model ........................ 127 6.4 Simulation Results and Discussion ......................................................... 131 6.4.1 Berthing (parking) Control of USV ..................................................... 133 6.4.2 Motion Control of UV ......................................................................... 136 Chapter 7: Obstacle Avoidance and Path Planning for Vehicle Using Rapidly-Exploring Random Trees Algorithm.................................................................. 168 7.1 Path Planning and Guidance: Two Interrelated Problems ....................... 168 7.2 RRT Algorithm for Exploration .............................................................. 171 7.2.1 Random Node Selection ...................................................................... 172 7.2.2 Nearest Neighbor Node Selection ....................................................... 173 7.2.3 RRT Exploration with Obstacles ......................................................... 174 7.3 RRT Algorithm for Navigation of AUV ................................................. 176 7.3.1 Basic RRT Algorithm .......................................................................... 176 7.3.2 Biased-Greedy RRT Algorithm ........................................................... 178 7.3.3 Synchronized Biased-Greedy RRT Algorithm .................................... 179 7.4 Path Pruning ............................................................................................ 182 7.4.1 Path Pruning Using LOS ..................................................................... 182 7.4.2 Global Path Pruning ............................................................................. 183 7.5 Summarize the Proposed RRT Algorithm ............................................... 185 7.6 Simulation for Path Following of AUV .................................................. 187 Chapter 8: Simulation of Complete USV-UC-UV Systems ............................ 196 8.1 Simulation Procedure .............................................................................. 196 8.2 Simulation Results and Discussion ......................................................... 201 8.2.1 Dynamic Behaviors of Complete USV (Stable)-Cable- AUV (Turning Motion) ..................................................................................................... 201 8.2.2 Dynamic Behaviors of Complete USV (Forward motion)-Cable- AUV (Turning Motion) ...................................................................................... 207 8.2.3 Applied Controller to Complete USV -Cable- AUV ........................... 215 Chapter 9: Conclusions and Future Works ..................................................... 238 9.1 Modeling of Complete USV-Cable-AUV System .................................. 238 9.2 Motion Control ........................................................................................ 239 9.3 Cable Force and Moment at the Tow Points ........................................... 239 9.4 Path Planning ........................................................................................... 239 9.5 Future Works ........................................................................................... 240Docto

    Wave Attenuation Capacity of Suspended Aquaculture Structures with Sugar Kelp and Mussels

    Get PDF
    Large aquaculture systems may have the potential to damp wave energy for coastal protection. The performance of these systems are influenced by the dynamics of components such as flexible kelp blades and mussel droppers. In this thesis, the dynamics of kelp blades and mussel droppers were investigated with a consistent-mass cable model with focus on understanding the asymmetric motion of kelp blades. The results showed the asymmetric blade motion in symmetric waves is caused by the spatial asymmetry of the encountered wave orbital velocities due to blade displacements and the asymmetric action on the blade by vertical wave orbital velocities. For the kelp grown from the bottom, the asymmetry of blade motion provides ‘shelter’ that could inhibit sediment suspension and coastal erosion. For suspended kelp attached to a longline, the asymmetric motion would induce the kelp to roll over the attachment in large wave conditions. With understanding the blade dynamics, physical model experiments using the morphological and mechanical properties of the cultivated Saccharina latissima at Saco Bay, Maine in the USA were conducted to investigate the wave attenuation characteristics of suspended kelp farms. The results indicated that 20 longlines with 100 plants/m could reduce up to 23% energy of 6.3 s waves. To predict wave attenuation under wider conditions, numerical and analytical wave attenuation models coupled with blade motion were developed for regular and irregular waves. With the analytical model, a case study at a site in Northeastern US showed the potential of suspended aquaculture farms to dissipate wave energy in a storm event. Compared to naturally occurring submerged aquatic vegetation (SAV), suspended aquaculture farms were found to perform better at attenuating shorter waves and less impacted by water level changes due to tides, surge and sea level rise. Implementing offshore aquaculture structures in conjunction with SAV-based living shorelines that can enhance the coastal defense of SAV-based living shorelines. This research is useful for the design of suspended aquaculture structures for nature-based coastal protection. The analytical wave attenuation models are also convenient to implement in large-scale models to analyze the influences of wave attenuation on coastal morphology
    corecore