158 research outputs found

    Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction

    Get PDF
    PURPOSE: To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction. METHODS: Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approaches on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm. RESULTS: Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the projection noise than MC-SRM. CONCLUSIONS: The authors' findings show that both approaches provide good solutions to the problem of calculating the SRM in pinhole SPECT reconstruction. The AE-SRM was faster to create and handle the projection noise better than MC-SRM. Nevertheless, the AE-SRM required a tedious experimental characterization of the intrinsic detector response. Creation of the MC-SRM required longer computation time and handled the projection noise worse than the AE-SRM.Nevertheless, the MC-SRM inherently incorporates extensive modeling of the system and therefore experimental characterization was not required

    Analytical, experimental, and Monte Carlo system response matrix for pinhole SPECT reconstruction

    Get PDF
    Purpose: To assess the performance of two approaches to the system response matrix (SRM) calculation in pinhole single photon emission computed tomography (SPECT) reconstruction. Methods: Evaluation was performed using experimental data from a low magnification pinhole SPECT system that consisted of a rotating flat detector with a monolithic scintillator crystal. The SRM was computed following two approaches, which were based on Monte Carlo simulations (MC-SRM) and analytical techniques in combination with an experimental characterization (AE-SRM). The spatial response of the system, obtained by using the two approaches, was compared with experimental data. The effect of the MC-SRM and AE-SRM approaches on the reconstructed image was assessed in terms of image contrast, signal-to-noise ratio, image quality, and spatial resolution. To this end, acquisitions were carried out using a hot cylinder phantom (consisting of five fillable rods with diameters of 5, 4, 3, 2, and 1 mm and a uniform cylindrical chamber) and a custom-made Derenzo phantom, with center-to-center distances between adjacent rods of 1.5, 2.0, and 3.0 mm. Results: Good agreement was found for the spatial response of the system between measured data and results derived from MC-SRM and AE-SRM. Only minor differences for point sources at distances smaller than the radius of rotation and large incidence angles were found. Assessment of the effect on the reconstructed image showed a similar contrast for both approaches, with values higher than 0.9 for rod diameters greater than 1 mm and higher than 0.8 for rod diameter of 1 mm. The comparison in terms of image quality showed that all rods in the different sections of a custom-made Derenzo phantom could be distinguished. The spatial resolution (FWHM) was 0.7 mm at iteration 100 using both approaches. The SNR was lower for reconstructed images using MC-SRM than for those reconstructed using AE-SRM, indicating that AE-SRM deals better with the projection noise than MC-SRM. Conclusions: The authors' findings show that both approaches provide good solutions to the problem of calculating the SRM in pinhole SPECT reconstruction. The AE-SRM was faster to create and handle the projection noise better than MC-SRM. Nevertheless, the AE-SRM required a tedious experimental characterization of the intrinsic detector response. Creation of the MC-SRM required longer computation time and handled the projection noise worse than the AE-SRM.Nevertheless, the MC-SRM inherently incorporates extensive modeling of the system and therefore experimental characterization was not required

    Analytical Modelling and Simulation of Single and Double Cone Pinholes for Real-Time In-Body Tracking of an HDR Brachytherapy Source

    Full text link
    © 2016 IEEE. The choice of pinhole geometry is a critical factor in the performance of pinhole-collimator-based source tracking systems for brachytherapy QA. In this work, an analytical model describing the penetrative sensitivity of a single-cone pinhole collimator to photons emitted from a point source is derived. Using existing models for single-cone resolution and double-cone sensitivity and resolution, the theoretical sensitivity and resolution of the single-cone collimator are quantitatively compared with those of a double-cone collimator with an equivalent field of view. Monte Carlo simulations of the single and double-cone pinhole collimators using an accurate 3D model of a commercial high dose rate brachytherapy source are performed to evaluate the relative performance of each geometry for a novel real-time HDR brachytherapy QA system, HDR BrachyView. The theoretical penetrative sensitivity of the single-cone pinhole is shown to be higher than the double-cone pinhole, which is in agreement with the results from the Monte Carlo simulations. The wider pinhole response function of the single-cone collimator results in a larger total error between the projected center of the source and the estimated center of mass of the source projection for the single-cone collimator, with the greatest error (at the maximum FoV angle) being 0.54 mm for the double-cone pinhole and 1.37 mm for the single-cone at Ξ = 60°. The double-cone pinhole geometry is determined to be the most appropriate choice for the pinhole collimator in the HDR BrachyView probe

    Development of a Practical Calibration Procedure for a Clinical SPECT/MRI System Using a Single INSERT Prototype Detector and Multi-Mini Slit-Slat Collimator

    Get PDF
    In the context of the INSERT project, we have been developing a clinical SPECT insert for an MRI system, in order to perform simultaneous SPECT/MRI of the human brain. This system will consist of 20 CsI:Tl scintillation detectors, 5 cm wide and 10 cm long, with a 72-channel SiPM readout per detector, and a multi-mini slit-slat (MSS) collimator set up in a stationary partial ring. Additionally the system has a custom-built transmit/receive MR coil to ensure compatibility with the SPECT system. Due to the novel design of the system/collimator, existing geometric calibration methods are not suitable. Therefore we propose a novel and practical calibration procedure that consists of a set of specific independent measurements to determine the geometric parameters of the collimator. This procedure was developed utilising a prototype system that consists of a reduced-size single detector with a 36-channel SiPM-based readout and a single MSS collimator module. Validation was performed by reconstructing different imaging phantoms, using a rotating stage to simulate a tomographic acquisition. Regarding uniformity, the COV for the cylinder phantom reconstructed with correct calibration parameters is 6.7%, whereas the COV using incorrect parameters is 9.4%. The quality of the phantom reconstructions provide evidence of the applicability of the proposed method to the calibration of the prototype system. This procedure can be easily adapted for the final INSERT system

    Modeling and evaluation of new collimator geometries in SPECT

    Get PDF

    Multi-Isotope Multi-Pinhole SPECT Bildgebung in kleinen Labortieren: Experimentelle Messungen und Monte Carlo Simulationen

    Get PDF
    Single photon emission computed tomography (SPECT) in small laboratory animals has become an integral part of translational medicine. It enables non-invasive validation of drug targeting, safety and efficacy in living organisms, which is progressively gaining importance in pharmaceutical industry. The increasing demand for efficiency in pharmaceutical research could be addressed by novel multitracer study designs. Multi-isotope multi-pinhole sampling allows validation of multiple tracers in a single experiment and consolidation of consecutive research trials. Due to physical and technical limitations, however, image quality and quantification can be substantially reduced. Advanced corrective procedures are required to establish multi-isotope multi-pinhole SPECT as a reliable and quantitative imaging technique for widespread use. For this purpose, the present work aimed to investigate the technical capabilities and physical limitations of multi-isotope multi-pinhole SPECT imaging in small laboratory animals. Based on experimental measurements and Monte Carlo simulations, specific error sources have been identified and procedures for quantitative image correction have been developed. A Monte Carlo simulation model of a state-of-the art SPECT/CT system has been established to provide a generalized framework for in-silico optimization of imaging hardware, acquisition protocols and reconstruction algorithms. The findings of this work can be used to improve image quality and quantification of SPECT in-vivo data for multi-isotope applications. They guide through the laborious process of multi-isotope protocol optimization and support the 3R welfare initiative that aims to replace, reduce and refine animal experimentation.Die Einzelphotonen-Emissionscomputertomographie (SPECT) in kleinen Labortieren hat sich als wichtiger Bestandteil der translationalen Medizin etabliert. Sie ermöglicht die nicht-invasive Validierung der Zielgenauigkeit, Wirksamkeit und Sicherheit von Wirkstoffen in lebenden Organismen und gewinnt zunehmend an Bedeutung in der pharmazeutischen Industrie. Die Forderung nach mehr Effizienz in der pharmazeutischen Forschung könnte durch neuartige Multitracer-Studien adressiert werden. Die Multi-Isotopen Akquisition mit Multi-Pinhole Kollimatoren ermöglicht die Validierung mehrerer Tracer in einem einzelnen Experiment und die Konsolidierung konsekutiver Bildgebungsstudien. Aufgrund physikalischer und technischer Limitationen ist die BildqualitĂ€t und Quantifizierbarkeit bei diesem Verfahren jedoch hĂ€ufig reduziert. Um die Multi-Isotopen SPECT als zuverlĂ€ssige und quantitative Bildgebungsmethode fĂŒr den breiten Einsatz zu etablieren sind komplexe Korrekturverfahren erforderlich. Ziel der vorliegenden Arbeit war daher, die technischen Möglichkeiten und physikalischen Limitationen der Multi-Isotopen SPECT-Bildgebung in kleinen Labortieren systematisch zu untersuchen. Mithilfe von experimentellen Messungen und Monte Carlo Simulationen wurden spezifische Fehlerquellen identifiziert und Verfahren zur quantitativen Bildkorrektur entwickelt. Zudem wurde das Monte-Carlo Modell eines neuartigen SPECT/CT-Systems etabliert, um eine Plattform fĂŒr die in-silico Optimierung von Bildgebungshardware, Aufnahmeprotokollen und Rekonstruktionsalgorithmen zu schaffen. Die Ergebnisse dieser Arbeit können die BildqualitĂ€t und Quantifizierbarkeit von SPECT in-vivo Daten fĂŒr Multi-Isotopen Anwendungen verbessern. Sie fĂŒhren beispielhaft durch den Prozess der Multi-Isotopen Protokolloptimierung und unterstĂŒtzen die 3R-Initiative mit dem Ziel, experimentelle Tierversuche zu vermeiden (Replace), zu vermindern (Reduce) und zu verbessern (Refine)

    Stationary, MR-compatible brain SPECT imaging based on multi-pinhole collimators

    Get PDF

    Preclinical SPECT imaging based on compact collimators and high resolution scintillation detectors

    Get PDF

    Brain SPECT Collimator Design

    Get PDF
    A multi-pinhole (MPH) collimator is designed to pair with an existing fan-beam collimator for single-photon emission computed tomography (SPECT). A mechanical design has been developed for constructing a brain-dedicated MPH collimator that will replace a commercial single pinhole collimator for general imaging. The spatial and weight constraints are satisfied. Material deformation during operation is simulated and used to ensure safety and imaging accuracy. Monte-Carlo simulation of the gamma-ray interaction is performed to simulate brain imaging and validate the model geometry. The student has also determined the operation type of the shutter mechanism for specific apertures that will allow or restrict the passage of photons to adapt the imaging characteristics of the collimator
    • 

    corecore