6,116 research outputs found

    Development of an ontology supporting failure analysis of surface safety valves used in Oil & Gas applications

    Get PDF
    Treball desenvolupat dins el marc del programa 'European Project Semester'.The project describes how to apply Root Cause Analysis (RCA) in the form of a Failure Mode Effect and Criticality Analysis (FMECA) on hydraulically actuated Surface Safety Valves (SSVs) of Xmas trees in oil and gas applications, in order to be able to predict the occurrence of failures and implement preventive measures such as Condition and Performance Monitoring (CPM) to improve the life-span of a valve and decrease maintenance downtime. In the oil and gas industry, valves account for 52% of failures in the system. If these failures happen unexpectedly it can cause a lot of problems. Downtime of the oil well quickly becomes an expensive problem, unscheduled maintenance takes a lot of extra time and the lead-time for replacement parts can be up to 6 months. This is why being able to predict these failures beforehand is something that can bring a lot of benefits to a company. To determine the best course of action to take in order to be able to predict failures, a FMECA report is created. This is an analysis where all possible failures of all components are catalogued and given a Risk Priority Number (RPN), which has three variables: severity, detectability and occurrence. Each of these is given a rating between 0 and 10 and then the variables are multiplied with each other, resulting in the RPN. The components with an RPN above an acceptable risk level are then further investigated to see how to be able to detect them beforehand and how to mitigate the risk that they pose. Applying FMECA to the SSV mean breaking the system down into its components and determining the function, dependency and possible failures. To this end, the SSV is broken up into three sub-systems: the valve, the actuator and the hydraulic system. The hydraulic system is the sub-system of the SSV responsible for containing, transporting and pressurizing of the hydraulic fluid and in turn, the actuator. It also contains all the safety features, such as pressure pilots, and a trip system in case a problem is detected in the oil line. The actuator is, as the name implies, the sub-system which opens and closes the valve. It is made up of a number of parts such as a cylinder, a piston and a spring. These parts are interconnected in a number of ways to allow the actuator to successfully perform its function. The valve is the actual part of the system which interacts with the oil line by opening and closing. Like the actuator, this sub-system is broken down into a number of parts which work together to perform its function. After breaking down and defining each subsystem on a functional level, a model was created using a functional block diagram. Each component also allows for the defining of dependencies and interactions between the different components and a failure diagram for each component. This model integrates the three sub-systems back into one, creating a complete picture of the entire system which can then be used to determine the effects of different failures in components to the rest of the system. With this model completed we created a comprehensive FMECA report and test the different possible CPM solutions to mitigate the largest risks

    Continuous maintenance and the future – Foundations and technological challenges

    Get PDF
    High value and long life products require continuous maintenance throughout their life cycle to achieve required performance with optimum through-life cost. This paper presents foundations and technologies required to offer the maintenance service. Component and system level degradation science, assessment and modelling along with life cycle ‘big data’ analytics are the two most important knowledge and skill base required for the continuous maintenance. Advanced computing and visualisation technologies will improve efficiency of the maintenance and reduce through-life cost of the product. Future of continuous maintenance within the Industry 4.0 context also identifies the role of IoT, standards and cyber security

    Virtual series-system models of imperfect repair

    Get PDF
    Novel models of imperfect repair are fitted to classic reliability datasets. The models suppose that a virtual system comprises a component and a remainder in series. On failure of the component, the component is renewed, and on failure of the remainder, the component is renewed and the remainder is minimally repaired. It follows that the repair process is a counting process that is the superposition of a renewal process and a Poisson process. The repair effect, that is, the extent to the system is repaired by renewal of the component, depends on the relative intensities of the superposed processes. The repair effect may be negative, when the intensity of the part that is a renewal process is a decreasing function. Other special cases of the model exist (renewal process, Poisson process, superposed renewal process and homogeneous Poisson process). Model fit is important because the nature of the model and corresponding parameter values determine the effectiveness of maintenance, which we also consider. A cost-minimizing repair policy may be determined provided the cost of preventive-repair is less than the cost of corrective-repair and the repairable part is ageing. If the remainder is ageing, then policy needs to be adapted as it ages

    3D Data Processing Toward Maintenance and Conservation. The Integrated Digital Documentation of Casa de Vidro

    Get PDF
    During the last decade, 3D integrated surveys and BIM modelling procedures have greatly improved the overall knowledge on some Brazilian Modernist buildings. In this framework, the Casa de Vidro 3D survey carried out by DIAPReM centre at Ferrara University, beside the important outputs, analysis and researches achieved from the point cloud database processing, was also useful to test several awareness increasing activities in cooperation with local stakeholders. The first digital documentation test of the Casa de Vidro allowed verifying the feasibility of a full survey on the building towards the restoration and possible placement of new architectures into the garden as an archive-museum of the Lina Bo and P.M. Bardi Foundation. Later, full 3D integrated survey and diagnostic analysis were carried out to achieve the total digital documentation of the house sponsored by the Keeping it Modern initiative of Getty Foundation (Los Angeles). Following its characteristics, the survey had to take into consideration the different architectural features, up to the relationship of architecture and nature. These 3D documentation activities and the point cloud processing allowed several analysis in a multidisciplinary framework

    Derivation of a cost model to aid management of CNC machine tool accuracy maintenance

    Get PDF
    Manufacturing industries strive to produce improved component accuracy while not reducing machine tool availability or production throughput. The accuracy of CNC production machines is one of the critical factors in determining the quality of these components. Maintaining the capability of the machine to produce in-tolerance parts can be approached in one of two ways: run to failure or periodic calibration and monitoring. The problem is analogous to general machine tool maintenance, but with the clear distinction that the failure mode of general machine tool components results in a loss of production, whereas that of accuracy allows parts to be produced, which are only later detected as non-conforming as part of the quality control processes. This distinction creates problems of cost-justification, since at this point in the manufacturing chain, any responsibility of the machine is not directly evident. Studies in the field of maintenance have resulted in cost calculations for the downtime associated with machine failure. This paper addresses the analogous, unanswered problem of maintaining the accuracy of CNC machine tools. A mathematical cost function is derived that can form the basis of a strategy for either running until non-conforming parts are detected or scheduling predictive CNC machine tool calibrations. This is sufficiently generic that it can consider that this decision will be based upon different scales of production, different values of components etc. Therefore, the model is broken down to a level where these variables for the different inputs can be tailored to the individual manufacturer

    Optimizing a Multi-State Cold-Standby System with Multiple Vacations in the Repair and Loss of Units

    Get PDF
    A complex multi-state redundant system with preventive maintenance subject to multiple events is considered. The online unit can undergo several types of failure: both internal and those provoked by external shocks. Multiple degradation levels are assumed as both internal and external. Degradation levels are observed by random inspections and, if they are major, the unit goes to a repair facility where preventive maintenance is carried out. This repair facility is composed of a single repairperson governed by a multiple vacation policy. This policy is set up according to the operational number of units. Two types of task can be performed by the repairperson, corrective repair and preventive maintenance. The times embedded in the system are phase type distributed and the model is built by using Markovian Arrival Processes with marked arrivals. Multiple performance measures besides the transient and stationary distribution are worked out through matrix-analytic methods. This methodology enables us to express the main results and the global development in a matrix-algorithmic form. To optimize the model, costs and rewards are included. A numerical example shows the versatility of the model

    Optimization of replacement policy for a one-component system subject to Poisson shocks

    Get PDF
    In reliability engineering, system failures may occur due to intrinsic or extrinsic factors. For example, drinking water systems may fail due to ageing and deterioration (i.e., intrinsic factors) or flooding (i.e., extrinsic factors). An interesting question is: for such systems, how should preventive maintenance be scheduled? This paper investigates this question. The paper develops a maintenance policy for repairable systems subject to extrinsic shocks. It assumes that a system may fail due to either intrinsic factors or extrinsic factors. Reliability indexes and the expected long run cost rate are then derived. A numerical example is given to illustrate the theoretical results
    • …
    corecore