856 research outputs found

    Railway traffic disturbance management by means of control strategies applied to operations in the transit system

    Get PDF
    Railway systems in metropolitan areas support a high density of daily traffic that is exposed to different types of disturbances in the service. An interesting topic in the literature is to obtain action protocols in the presence of contingencies which can affect the system operation, avoiding the propagation of perturbation and minimizing its negative consequences. Assume that, with a small margin of time (e.g. one day), the decision-maker of the transportation network is knowing that a part of the train fleet will become inoperative temporarily along a specific transit line and none additional vehicle will be able to restore the affected services. The decision to be taken in consequence will require to reschedule the existing services by possibly reducing the number of expeditions (line runs). This will affect travellers who regularly use the transit system to get around. Consider that the decision-maker aims to lose the least number of passengers as a consequence of having introduced changes into the transit line. A strategy that could be applied in this context is to remove those line runs which are historically less used by travellers without affecting the remaining services. Another alternative strategy might be to reschedule the timetables of the available units, taking into account the pattern of arrivals of users to the boarding stations and the user behavior during waiting times (announced in situ). The aim of this work consists of assessing the strategy of train rescheduling along the current transportation line when the supply must be reduced in order to reinforce the service of another line, exploited by the same public operator, which has suffered an incidence or emergency.Ministerio de Economía y CompetitividadFondo Europeo de Desarrollo Regiona

    Smooth and controlled recovery planning of disruptions in rapid transit networks

    Get PDF
    This paper studies the disruption management problem of rapid transit rail networks. We consider an integrated model for the recovery of the timetable and the rolling stock schedules. We propose a new approach to deal with large-scale disruptions: we limit the number of simultaneous schedule changes as much as possible, and we control the length of the recovery period, in addition to the traditional objective criteria such as service quality and operational costs. Our new criteria express two goals: the recovery schedules can easily be implemented in practice, and the operations quickly return to the originally planned schedules after the recovery period. We report our computational tests on realistic problem instances of the Spanish rail operator RENFE and demonstrate the potential of this approach by solving different variants of the proposed model

    A mixed-integer linear program for real-time train platforming management

    Get PDF
    Unexpected events may perturb operations and generate conflicts that must be addressed promptly to limit delay propagation and other negative impacts on the network. The real-time railway traffic management problem deals with disruptions in railway networks, including tracks, junctions and stations. When they happen in station areas, new decisions involving train platforming, rerouting, ordering and timing must be made in real time. This paper explores a mesoscopic approach to deal with disruptions at rail stations. A mathematical programming-based model is proposed to determine re-routing and re-scheduling decisions for railway traffic in a station area. The key steps of the approach, which simulate what happens in real-time traffic management, are: i) an initial off-line preprocessing stage of the set of feasible routes originally planned, ii) a second preprocessing stage which analyses the disruption and sets the necessary parameters for the last step iii), which consists of an integer programming model that seeks solutions which minimise deviations from planned train schedules and assigns new and appropriate platforms (if necessary). Computational experiments show that realistic instances can be solved near to optimality using CPLEX in very short times. This allows to consider this methodology for solving real time traffic management problems.Peer ReviewedPostprint (published version

    Using information engineering to understand the impact of train positioning uncertainties on railway subsystems

    Get PDF
    Many studies propose new advanced railway subsystems, such as Driver Advisory System (DAS), Automatic Door Operation (ADO) and Traffic Management System (TMS), designed to improve the overall performance of current railway systems. Real time train positioning information is one of the key pieces of input data for most of these new subsystems. Many studies presenting and examining the effectiveness of such subsystems assume the availability of very accurate train positioning data in real time. However, providing and using high accuracy positioning data may not always be the most cost-effective solution, nor is it always available. The accuracy of train position information is varied, based on the technological complexity of the positioning systems and the methods that are used. In reality, different subsystems, henceforth referred to as ‘applications’, need different minimum resolutions of train positioning data to work effectively, and uncertainty or inaccuracy in this data may reduce the effectiveness of the new applications. However, the trade-off between the accuracy of the positioning data and the required effectiveness of the proposed applications is so far not clear. A framework for assessing the impact of uncertainties in train positions against application performance has been developed. The required performance of the application is assessed based on the characteristics of the railway system, consisting of the infrastructure, rolling stock and operational data. The uncertainty in the train positioning data is considered based on the characteristics of the positioning system. The framework is applied to determine the impact of the positioning uncertainty on the application’s outcome. So, in that way, the desired position resolution associated with acceptable application performance can be characterised. In this thesis, the framework described above is implemented for DAS and TMS applications to understand the influence of positioning uncertainty on their fundamental functions compared to base case with high accuracy (actual position). A DAS system is modelled and implemented with uncertainty characteristic of a Global Navigation Satellite System (GNSS). The train energy consumption and journey time are used as performance measures to evaluate the impact of these uncertainties compared to a base case. A TMS is modelled and implemented with the uncertainties of an on-board low-cost low-accuracy positioning system. The impact of positioning uncertainty on the modelled TMS is evaluated in terms of arrival punctuality for different levels of capacity consumption. The implementation of the framework for DAS and TMS applications determines the following: • which of the application functions are influenced by positioning uncertainty; • how positioning uncertainty influences the application output variables; • how the impact of positioning uncertainties can be identified, through the application output variables, whilst considering the impact of other railway uncertainties; • what is the impact of the underperforming application, due to positioning uncertainty, on the whole railway system in terms of energy, punctuality and capacity

    Foundation technology for developing an autonomous Complex Dwell-time Diagnostics (CDD) Tool

    Full text link
    © 2015 ATRF, Commonwealth of Australia. All rights reserved. As the demand for rail services grows, intense pressure is placed on stations at the centre of rail networks where large crowds of rail passengers alight and board trains during peak periods. The time it takes for this to occur — the dwell-time — can become extended when high numbers of people congest and cross paths. Where a track section is operating at short headways, extended dwell-times can cause delays to scheduled services that can in turn cause a cascade of delays that eventually affect entire networks. Where networks are operating at close to their ceiling capacity, dwell-time management is essential and in most cases requires the introduction of special operating procedures. This paper details our work towards developing an autonomous Complex Dwell-time Diagnostics (CDD) Tool — a low cost technology, capable of providing information on multiple dwell events in real time. At present, rail operators are not able to access reliable and detailed enough data on train dwell operations and passenger behaviour. This is because much of the necessary data has to be collected manually. The lack of rich data means train crews and platform staff are not empowered to do all they could to potentially stabilise and reduce dwell-times. By better supporting service providers with high quality data analysis, the number of viable train paths can be increased, potentially delaying the need to invest in high cost hard infrastructures such as additional tracks. The foundation technology needed to create CDD discussed in this paper comprises a 3D image data based autonomous system capable of detecting dwell events during operations and then create business information that can be accessed by service providers in real time during rail operations. Initial tests of the technology have been carried out at Brisbane Central rail station. A discussion of the results to date is provided and their implications for next steps

    Risk-based inspection planning of rail infrastructure considering operational resilience

    Get PDF
    This research proposes a response model for a disrupted railway track inspection plan. The proposed model takes the form of an active acceptance risk strategy while having been developed under the disruption risk management framework. The response model entails two components working in a series; an integrated Nonlinear Autoregressive model with eXogenous input Neural Network (iNARXNN), alongside a risk-based value measure for predicting track measurements data and an output valuation. The neural network fuses itself to Bayesian inference, risk aversion and a data-driven modelling approach, as a means of ensuring the utmost standard of prediction ability. Testing on a real dataset indicates that the iNARXNN model provides a mean prediction accuracy rate of 95%, while also successfully preserving data characteristics across both time and frequency domains. This research also proposes a network-based model that highlights the value of accepting iNARXNN’s outputs. The value is formulated as the ratio of rescheduling cost to a change in the risk level from a missed opportunity to repair a defective track, i.e., late defect detection. The value model demonstrates how the resilience action is useful for determining a rescheduling strategy that has (negative) value when dealing with a disrupted track inspection pla

    Survey on Ten Years of Multi-Depot Vehicle Routing Problems: Mathematical Models, Solution Methods and Real-Life Applications

    Get PDF
    A crucial practical issue encountered in logistics management is the circulation of final products from depots to end-user customers. When routing and scheduling systems are improved, they will not only improve customer satisfaction but also increase the capacity to serve a large number of customers minimizing time. On the assumption that there is only one depot, the key issue of distribution is generally identified and formulated as VRP standing for Vehicle Routing Problem. In case, a company having more than one depot, the suggested VRP is most unlikely to work out. In view of resolving this limitation and proposing alternatives, VRP with multiple depots and multi-depot MDVRP have been a focus of this paper. Carrying out a comprehensive analytical literature survey of past ten years on cost-effective Multi-Depot Vehicle Routing is the main aim of this research. Therefore, the current status of the MDVRP along with its future developments is reviewed at length in the paper

    Mathematical models for the design and planning of transportation on demand in urban logistics networks

    Get PDF
    Falta palabras claveThe freight-transport industry has made enormous progress in the development and application of logistics techniques that has transformed its operation, giving raise to impressive productivity gains and improved responsiveness to its consumers. While the separation of passenger and freight traffic is a relatively new concept in historic terms, recent approaches point out that most freight-logistics techniques are transferable to the passenger-transport industry. In this sense, passenger logistics can be understood as the application of logistics techniques in urban contexts to the passenger-transport industry. The design of an urban logistic network integrates decisions about the emplacement, number and capacities of the facilities that will be located, the flows between them, demand patterns and cost structures that will validate the profitability of the process. This strategic decision settles conditions and constraints of latter tactical and operative decisions. In addition, different criteria are involved during the whole process so, in general terms, it is essential an exhaustive analysis, from the mathematical point of view, of the decision problem. The optimization models resulting from this analysis require techniques and mathematical algorithms in constant development and evolution. Such methods demand more and more a higher number of interrelated elements due to the increase of scale used in the current logistics and transportation problems. This PhD dissertation explores different topics related to Mathematical models for the design and planning of transportation on demand in urban logistics networks. The contributions are divided into six main chapters since and, in addition, Chapter 0 offers a basic background for the contents that are presented in the remaining six chapters. Chapter 1 deals with the Transit Network Timetabling and Scheduling Problem (TNTSP) in a public transit line. The TNTSP aims at determining optimal timetables for each line in a transit network by establishing departure and arrival times of each vehicle at each station. We assume that customers know departure times of line runs offered by the system. However, each user, traveling later of before their desired travel time, will give rise to an inconvenience cost, or a penalty cost if that user cannot be served according to the scheduled timetable. The provided formulation allocates each user to the best possible timetable considering capacity constraints. The problem is formulated using a p-median based approach and solved using a clustering technique. Computational results that show useful applications of this methodology are also included. Chapter 2 deals with the TNTSP in a public transit network integrating in the model the passengers' routings. The current models for planning timetables and vehicle schedules use the knowledge of passengers' routings from the results of a previous phase. However, the actual route a passenger will take strongly depends on the timetable, which is not yet known a priori. The provided formulation guarantees that each user is allocated to the best possible timetable ensuring capacity constraints. Chapter 3 deals with the rescheduling problem in a transit line that has suffered a eet size reduction. We present different modelling possibilities depending on the assumptions that need to be included in the modelization and we show that the problem can be solved rapidly by using a constrained maxcost- ow problem whose coe_cient matrix we prove is totally unimodular. We test our results in a testbed of random instances outperforming previous results in the literature. An experimental study, based on a line segment of the Madrid Regional Railway network, shows that the proposed approach provides optimal reassignment decisions within computation times compatible with real-time use. In Chapter 4 we discuss the multi-criteria p-facility median location problem on networks with positive and negative weights. We assume that the demand is located at the nodes and can be different for each criterion under consideration. The goal is to obtain the set of Pareto-optimal locations in the graph and the corresponding set of non-dominated objective values. To that end, we first characterize the linearity domains of the distance functions on the graph and compute the image of each linearity domain in the objective space. The lower envelope of a transformation of all these images then gives us the set of all non-dominated points in the objective space and its preimage corresponds to the set of all Pareto-optimal solutions on the graph. For the bicriteria 2-facility case we present a low order polynomial time algorithm. Also for the general case we propose an efficient algorithm, which is polynomial if the number of facilities and criteria is fixed. In Chapter 5, Ordered Weighted Average optimization problems are studied from a modeling point of view. Alternative integer programming formulations for such problems are presented and their respective domains studied and compared. In addition, their associated polyhedra are studied and some families of facets and new families of valid inequalities presented. The proposed formulations are particularized for two well-known combinatorial optimization problems, namely, shortest path and minimum cost perfect matching, and the results of computational experiments presented and analyzed. These results indicate that the new formulations reinforced with appropriate constraints can be effective for efficiently solving medium to large size instances. In Chapter 6, the multiobjective Minimum cost Spanning Tree Problem (MST) is studied from a modeling point of view. In particular, we use the ordered median objective function as an averaging operator to aggregate the vector of objective values of feasible solutions. This leads to the Ordered Weighted Average Spanning Tree Problem (OWASTP), which we study in this work. To solve the problem, we propose different integer programming formulations based in the most relevant MST formulations and in a new one. We analyze several enhancements for these formulations and we test their performance over a testbed of random instances. Finally we show that an appropriate choice will allow us to solve larger instances with more objectives than those previously solved in the literature.Premio Extraordinario de Doctorado U
    corecore