2,227 research outputs found

    Design of ultraprecision machine tools with application to manufacturing of miniature and micro components

    Get PDF
    Currently the underlying necessities for predictability, producibility and productivity remain big issues in ultraprecision machining of miniature/microproducts. The demand on rapid and economic fabrication of miniature/microproducts with complex shapes has also made new challenges for ultraprecision machine tool design. In this paper the design for an ultraprecision machine tool is introduced by describing its key machine elements and machine tool design procedures. The focus is on the review and assessment of the state-of-the-art ultraprecision machining tools. It also illustrates the application promise of miniature/microproducts. The trends on machine tool development, tooling, workpiece material and machining processes are pointed out

    A dynamics-driven approach to precision machines design for micro-manufacturing and its implementation perspectives

    Get PDF
    Precision machines are essential elements in fabricating high quality micro products or micro features and directly affect the machining accuracy, repeatability and efficiency. There are a number of literatures on the design of industrial machine elements and a couple of precision machines commercially available. However, few researchers have systematically addressed the design of precision machines from the dynamics point of view. In this paper, the design issues of precision machines are presented with particular emphasis on the dynamics aspects as the major factors affecting the performance of the precision machines and machining processes. This paper begins with a brief review of the design principles of precision machines with emphasis on machining dynamics. Then design processes of precision machines are discussed, and followed by a practical modelling and simulation approaches. Two case studies are provided including the design and analysis of a fast tool servo system and a 5-axis bench-top micro-milling machine respectively. The design and analysis used in the two case studies are formulated based on the design methodology and guidelines

    Prediction of machining accuracy based on geometric error estimation of tool rotation profile in five-axis multi-layer flank milling process

    Get PDF
    In five-axis multi-layer flank milling process, the geometric error of tool rotation profile caused by radial dimension error and setup error has great influence on the machining accuracy. In this work, a new comprehensive error prediction model considering the inter-layer interference caused by tool rotation profile error is established, which incorporates a pre-existing prediction model dealing with a variety of errors such as geometric errors of machine tool, workpiece locating errors, and spindle thermal deflection errors. First, a series of tool contact points on the tool swept surface in each single layer without overlapping with others are calculated. Second, the position of the tool contact points on the overlapped layers is updated based on the detection and calculation of inter-layer interferences. Third, all evaluated tool contact points on the final machined surface are available for completing the accuracy prediction of the machined surface. A machining experiment has been carried out to validate this prediction model and the results show the model is effective

    Traceable onboard metrology for machine tools and large-scale systems

    Get PDF
    Esta tesis doctoral persigue la mejora de las funcionalidades de las máquinas herramienta para la fabricación de componentes de alto valor añadido. En concreto, la tesis se centra en mejorar la precisión de las máquinas herramienta en todo su volumen de trabajo y en desarrollar el conocimiento para realizar la medición por coordenadas trazable con este medio productivo. En realidad, la tecnología para realizar mediciones en máquina herramienta ya está disponible, como son los palpadores de contacto y los softwares de medición, sin embargo, hay varios factores que limitan la trazabilidad de la medición realizada en condiciones de taller, que no permiten emplear estas medidas para controlar el proceso de fabricación o validar la pieza en la propia máquina-herramienta, asegurando un proceso de fabricación de cero-defectos. Aquí, se propone el empleo del documento técnico ISO 15530-3 para piezas de tamaño medio. Para las piezas de gran tamaño se presenta una nueva metodología basada en la guía VDI 2617-11, que no está limitada por el empleo de una pieza patrón para caracterizar el error sistemático de la medición por coordenadas en la máquina-herramienta. De esta forma, se propone una calibración previa de la máquina-herramienta mediante una solución de multilateración integrada en máquina, que se traduce en la automatización del proceso de verificación y permite reducir el tiempo y la incertidumbre de medida. En paralelo, con el conocimiento generado en la integración de esta solución en la máquina-herramienta, se propone un nuevo procedimiento para la caracterización de la precisión de apunte del telescopio LSST en todo su rango de trabajo. Este nuevo procedimiento presenta una solución automática e integrada con tecnología láser tracker para aplicaciones de gran tamaño donde la precisión del sistema es un requerimiento clave para su buen funcionamiento.<br /

    Traceability of on-machine tool measurement: a review

    Get PDF
    Nowadays, errors during the manufacturing process of high value components are not acceptable in driving industries such as energy and transportation. Sectors such as aerospace, automotive, shipbuilding, nuclear power, large science facilities or wind power need complex and accurate components that demand close measurements and fast feedback into their manufacturing processes. New measuring technologies are already available in machine tools, including integrated touch probes and fast interface capabilities. They provide the possibility to measure the workpiece in-machine during or after its manufacture, maintaining the original setup of the workpiece and avoiding the manufacturing process from being interrupted to transport the workpiece to a measuring position. However, the traceability of the measurement process on a machine tool is not ensured yet and measurement data is still not fully reliable enough for process control or product validation. The scientific objective is to determine the uncertainty on a machine tool measurement and, therefore, convert it into a machine integrated traceable measuring process. For that purpose, an error budget should consider error sources such as the machine tools, components under measurement and the interactions between both of them. This paper reviews all those uncertainty sources, being mainly focused on those related to the machine tool, either on the process of geometric error assessment of the machine or on the technology employed to probe the measurand

    A CNC machine guiderail wear in-process monitoring system

    Get PDF
    This research investigates and establishes a system for monitoring the guiderail wear on medium size CNC machines. The system possesses the function of measuring the wear state on guiderails in an in-process way, which is more functional and efficient than the traditional method. In this research, two different types of sensors for monitoring each particular friction wear feature have been implemented. Calculations to complete designing of a physical experimental rig and the realisation of in-process monitoring are also discussed in detail. The first type sensor adopted in the experiment is the accelerometer, used for monitoring the vibration caused by the wear on bearings and the increasing roughness on the guiderail surface. The second sensor is the capacitance probe mounted on the table and against a straight edge, searching the deviation signal of the moving table while rolling on the guiderail surface with wear. The novelty of this thesis covering an in-process monitoring approach has been tested based on a physical experimental rig. The data calculation illustrates how the noise and other disturbances are filtered and data analysed to determine the state of wear. This system utilises an indirect solution to wear monitoring with less cost while delivering convincing reliability according to the experiment result. The thesis shows the possibility to acquire CNC machine guiderail wear data through an in-process monitoring system

    A region segmentation method to measure multiple features using a tactile scanning probe

    Get PDF
    Coordinate measuring machines (CMMs) have been widely used in industry to precisely measure parts for inspection or quality control. One of the main barriers to using a CMM touch-trigger probe is the cumbersome programming work required to identify the probing points and for scan path planning. In this paper, we propose a practical data-segmentation method to continuously measure multiple features of the workpiece using a scanning probe. This approach takes advantage of the fast data-capture capability of the scanning probe and, subsequently, the point dataset is segmented using the information extracted from the CAD model of the part. This methodology does not require tedious programming and all desired measurement results can be obtained from a single scan. The principle of the method is presented, and the feasibility of the method is experimentally verified on a bridge-type Hexagon DEA Global CMM equipped with a Leitz LSP-X1 probe. The proposed method avoids manual operation errors and generates more sampling points than traditional methods; therefore, theoretically providing lower measurement uncertainty. The test results also indicate that the new method using a scanning probe is easy to implement and can save more than 90% measurement time in comparison with a conventional touch-trigger method

    New optical sensing system applied to taut wire based straightness measurement

    Get PDF
    In modern manufacturing industry, precision components are typically produced on Computer Numerical Controlled (CNC) machine tools which translate their accuracy onto machined parts. This accuracy is affected by a set of different motion errors caused by inherent imperfections in the design and build of the machine, variations in the local environment such as temperature, the cutting process itself and human factors. The reduction of these effects is achieved primarily through design improvements and error compensation techniques. The latter requires detailed knowledge about the existing errors in order to deal with them effectively. This thesis describes a novel sensor system for measurement of errors caused by deviation in the straightness of Cartesian axes present in the structural loop of most machine tools. Currently there are very few methods available to measure straightness directly, each having advantages and disadvantages when considering simplicity, accuracy and affordability. The proposed system uses a taut wire reference with a novel sensor, a two-point technique for reference error cancellation and software to enable fast and accurate measurement of straightness between any two points of the measured machine’s working volume. The standout features of the sensing system include ultra-low cost and high performance when compared with existing state-of-the-art systems. It is capable of measuring a straightness error as low as 3μm and takes only 2s of dwell time between readings, while laser interferometer requires 4s to perform averaging when measuring the same error. Existing taut wire microscopy is limited by 10-20μm of measured error depending on optics quality and manual reading takes at least 5s to minimise the human error. Setup time is also different – the new system saves 15 minutes time on 2m axis and more on longer lengths compared the laser due to simpler reference alignment procedure. Theoretical analysis and practical implementation are followed by detailed performance evaluation experiments carried out under typical manufacturing conditions comprising different machine tools, different axes, measured errors, environmental effects and alternative measuring equipment. Tests cover aspects of accuracy, repeatability and overall system stability providing a complete picture of the system’s capability and the method’s potential which is also supported by uncertainty analysis. In addition to defining setup and measuring procedures, a user-friendly software interface is described and its main units are explained with respect to overall measurement efficiency and setup fault detection

    An investigation into the effects of thermal errors of a machine tool on the dimensional accuracy of parts

    Get PDF
    The reduction of machining errors has become increasingly important in modern manufacturing in order to obtain the required quality of parts. Geometric error makes up the basic part of the inaccuracy of the machine tool at the cold stage; however, as the machine running time increases, thermally-induced errors start to play a major role in machined workpiece accuracy. Dimensional accuracy of machined parts could be affected by several factors, such as the machine tool’s condition, the workpiece material, machining procedures and the operator’s skill. Of these, the machine condition plays an important role in determining the machine’s performance and its effects on the final dimensions of machined parts. The machine’s condition can be evaluated by its errors which include the machine’s built-in geometric and kinematic error, thermal error, cutting force-induced error and other errors.This research represents a detailed study of the effects of thermal errors of a machine tool on the dimensional accuracy of the parts produced on it. A new model has been developed for the prediction of thermally-induced errors of a three-axis machine tool. By applying the proposed model to real machining examples, the dimensional accuracy of machined parts was improved. The research work presented in this thesis has the following four unique characteristics:• Investigated the thermal effects on the dimensional accuracy of machined parts by machining several components at different thermal conditions of a machine tool to establish a direct relationship between the dimensional accuracy of machined parts and the machine tool’s thermal status.• Developed a new model for calculating thermally-induced volumetric error where the three axial positioning errors were modelled as functions of ball screw nut temperature and travel distance. The influences of the other 18 error components were ignored due to their insignificant influence.• Employed a Laser Doppler Displacement Meter (LDDM) with three thermocouples, instead of the expensive laser interferometer and the large number of thermocouples required by the traditional model, to assess the thermally-induced volumetric errors of a three-axis CNC machining centre. The thermally-induced volumetric error predictions were in good agreement with the measured results.• Applied the newly developed thermally-induced volumetric error compensation model for drilling operations to improve the positioning accuracy of drilled holes. The results show that positioning accuracy of the drilled holes was improved significantly after compensation. The absolute reduction of the positioning errors of drilled holes was an average 30.44 μm at the thermal stable stage, while the average relative reduction ratio of these errors was 77%.Therefore, the proposed thermally-induced volumetric error compensation model can bean effective tool for enhancing the machining accuracy of existing machine tools used in the industry
    corecore