832 research outputs found

    Controllability distributions and systems approximations: a geometric approach

    Get PDF
    Given a nonlinear system we determine a relation at an equilibrium between controllability distributions defined for a nonlinear system and a Taylor series approximation of it. The value of such a relation is appreciated if we recall that the solvability conditions as well as the solutions to some control synthesis problems can be stated in terms of geometric concepts like controlled invariant (controllability) distributions. The relation between these distributions at the equilibrium will help us to decide when the solvability conditions of this kind of problems are equivalent for the nonlinear system and its approximatio

    Robust Geometric Control of a Distillation Column

    Get PDF

    Evaluation of Design Methods for Geometric Control

    Get PDF

    Controllability distributions and systems approximations: a geometric approach

    Get PDF
    Given a nonlinear system, a relation between controllability distributions defined for a nonlinear system and a Taylor series approximation of it is determined. Special attention is given to this relation at the equilibrium. It is known from nonlinear control theory that the solvability conditions as well as the solutions to some control synthesis problems can be stated in terms of geometric concepts like controlled invariant (controllability) distributions. By dealing with a k-th Taylor series approximation of the system, the authors are able to decide when the solvability conditions of these kinds of problem are equivalent for the nonlinear system and its approximation. Some cases when the solution obtained from the approximated system is an approximation of an exact solution for the original problem are distinguished. Some examples illustrate the result

    Integration of process design and control: A review

    Get PDF
    There is a large variety of methods in literature for process design and control, which can be classified into two main categories. The methods in the first category have a sequential approach in which, the control system is designed, only after the details of process design are decided. However, when process design is fixed, there is little room left for improving the control performance. Recognizing the interactions between process design and control, the methods in the second category integrate some control aspects into process design. With the aim of providing an exploration map and identifying the potential areas of further contributions, this paper presents a thematic review of the methods for integration of process design and control. The evolution paths of these methods are described and the advantages and disadvantages of each method are explained. The paper concludes with suggestions for future research activities

    A Framework for Globally Optimizing Mixed-Integer Signomial Programs

    Get PDF
    Mixed-integer signomial optimization problems have broad applicability in engineering. Extending the Global Mixed-Integer Quadratic Optimizer, GloMIQO (Misener, Floudas in J. Glob. Optim., 2012. doi:10.1007/s10898-012-9874-7), this manuscript documents a computational framework for deterministically addressing mixed-integer signomial optimization problems to ε-global optimality. This framework generalizes the GloMIQO strategies of (1) reformulating user input, (2) detecting special mathematical structure, and (3) globally optimizing the mixed-integer nonconvex program. Novel contributions of this paper include: flattening an expression tree towards term-based data structures; introducing additional nonconvex terms to interlink expressions; integrating a dynamic implementation of the reformulation-linearization technique into the branch-and-cut tree; designing term-based underestimators that specialize relaxation strategies according to variable bounds in the current tree node. Computational results are presented along with comparison of the computational framework to several state-of-the-art solvers. © 2013 Springer Science+Business Media New York

    Multivariable Adaptive Control Design Under Internal Model Control Structure.

    Get PDF
    A new adaptive multivariate control scheme has been devised. The method combines the best characteristics of conventional adaptive systems and internal model control (IMC) structure. The control scheme builds by itself the required models and avoids the ambiguities in the definition of performance specifications. The problem of plant inversion associated with the IMC structure has been solved. The method introduced in this work is based on the properties of the Smith-McMillan form. However, the method does not require the explicit determination of the form. Furthermore, the computation of a stable plant inverse requires only matrix inversion and scalar polynomial factorization. The resulting algorithm is suitable for on-line operation. The control schemed is implemented through the following stages: (1) Identification. The parameters of a multivariable ARX model are estimated using a recursive least square algorithm with variable forgetting factor. The input and output orders can be used as additional degrees of freedom. The algorithm developed shows good numerical characteristics with fast convergence even for a large number of parameters. (2) Computation of the manipulated variables. The model is used to determine a controller following the IMC approach. The resulting equations are solved to compute the required manipulated variables. The algorithm for system inversion allows computations to be executed on-line. (3) Filtering. The usual filters of the IMC approach are also used in the adaptive scheme. The objective is to reduce the sensitivity of the controller. Only non-adaptive non-interactive filters have been considered. The results with first order low pass filters are satisfactory. The bandwidth of the filter is used as an additional tuning parameter. The adaptive control strategy has been extensively tested using computer simulation. The tests include extensions to non-linear plants. Comparisons with non-adaptive IMC control show the advantage of the new scheme developed in this work

    Data-based fault detection in chemical processes: Managing records with operator intervention and uncertain labels

    Get PDF
    Developing data-driven fault detection systems for chemical plants requires managing uncertain data labels and dynamic attributes due to operator-process interactions. Mislabeled data is a known problem in computer science that has received scarce attention from the process systems community. This work introduces and examines the effects of operator actions in records and labels, and the consequences in the development of detection models. Using a state space model, this work proposes an iterative relabeling scheme for retraining classifiers that continuously refines dynamic attributes and labels. Three case studies are presented: a reactor as a motivating example, flooding in a simulated de-Butanizer column, as a complex case, and foaming in an absorber as an industrial challenge. For the first case, detection accuracy is shown to increase by 14% while operating costs are reduced by 20%. Moreover, regarding the de-Butanizer column, the performance of the proposed strategy is shown to be 10% higher than the filtering strategy. Promising results are finally reported in regard of efficient strategies to deal with the presented problemPeer ReviewedPostprint (author's final draft

    Multiobjective evolutionary algorithms for multivariable PI controller design

    Full text link
    A multiobjective optimisation engineering design (MOED) methodology for PI controller tuning in multivariable processes is presented. The MOED procedure is a natural approach for facing multiobjective problems where several requirements and specifications need to be fulfilled. An algorithm based on the differential evolution technique and spherical pruning is used for this purpose. To evaluate the methodology, a multivariable control benchmark is used. The obtained results validate the MOED procedure as a practical and useful technique for parametric controller tuning in multivariable processes.This work was partially supported by the FPI-2010/19 grant and the project PAID-06-11 from the Universitat Politecnica de Valencia and the projects DPI2008-02133, TIN2011-28082 and ENE2011-25900 from the Spanish Ministry of Science and Innovation.Reynoso Meza, G.; Sanchís Saez, J.; Blasco Ferragud, FX.; Herrero Durá, JM. (2012). Multiobjective evolutionary algorithms for multivariable PI controller design. Expert Systems with Applications. 39(9):7895-7907. https://doi.org/10.1016/j.eswa.2012.01.111S7895790739
    corecore