1,634 research outputs found

    Design and analysis of a reconfigurable discrete pin tooling system for molding of three-dimensional free-form objects

    Get PDF
    This paper presents the design and analysis of a new reconfigurable tooling for the fabrication of three-dimensional (3D) free-form objects. The proposed reconfigurable tooling system comprises a set of matrices of a closely stacked discrete elements (i.e., pins) arranged to form a cavity in which a free-form object can be molded. By reconfiguring the pins, a single tool can be used in the place of multiple tools to produce different parts with the involvement of much lesser time and cost. The structural behavior of a reconfigurable mold tool under process conditions of thermoplastic molding is studied using a finite element method (FEM) based methodology. Various factors that would affect the tool behavior are identified and their effects are analyzed to optimally design a reconfigurable mold tool for a given set of process conditions. A prototype, open reconfigurable mold tool is developed to present the feasibility of the proposed tooling system. Several case studies and sample parts are also presented in this paper

    In-Mold Assembly of Multi-Functional Structures

    Get PDF
    Combining the recent advances in injection moldable polymer composites with the multi-material molding techniques enable fabrication of multi-functional structures to serve multiple functions (e.g., carry load, support motion, dissipate heat, store energy). Current in-mold assembly methods, however, cannot be simply scaled to create structures with miniature features, as the process conditions and the assembly failure modes change with the feature size. This dissertation identifies and addresses the issues associated with the in-mold assembly of multi-functional structures with miniature components. First, the functional capability of embedding actuators is developed. As a part of this effort, computational modeling methods are developed to assess the functionality of the structure with respect to the material properties, process parameters and the heat source. Using these models, the effective material thermal conductivity required to dissipate the heat generated by the embedded small scale actuator is identified. Also, the influence of the fiber orientation on the heat dissipation performance is characterized. Finally, models for integrated product and process design are presented to ensure the miniature actuator survivability during embedding process. The second functional capability developed as a part of this dissertation is the in-mold assembly of multi-material structures capable of motion and load transfer, such as mechanisms with compliant hinges. The necessary hinge and link design features are identified. The shapes and orientations of these features are analyzed with respect to their functionality, mutual dependencies, and the process cost. The parametric model of the interface design is developed. This model is used to minimize both the final assembly weight and the mold complexity as the process cost measure. Also, to minimize the manufacturing waste and the risk of assembly failure due to unbalanced mold filling, the design optimization of runner systems used in multi-cavity molds for in-mold assembly is developed. The complete optimization model is characterized and formulated. The best method to solve the runner optimization problem is identified. To demonstrate the applicability of the tools developed in this dissertation towards the miniaturization of robotic devices, a case study of a novel miniature air vehicle drive mechanism is presented

    Computer Aided Design of Side Actions for Injection Molding of Complex Parts

    Get PDF
    Often complex molded parts include undercuts, patches on the part boundaries that are not accessible along the main mold opening directions. Undercuts are molded by incorporating side actions in the molds. Side actions are mold pieces that are removed from the part using translation directions different than the main mold opening direction. However, side actions contribute to mold cost by resulting in an additional manufacturing and assembly cost as well as by increasing the molding cycle time. Therefore, generating shapes of side actions requires solving a complex geometric optimization problem. Different objective functions may be needed depending upon different molding scenarios (e.g., prototyping versus large production runs). Manually designing side actions is a challenging task and requires considerable expertise. Automated design of side actions will significantly reduce mold design lead times. This thesis describes algorithms for generating shapes of side actions to minimize a customizable molding cost function. Given a set of undercut facets on a polyhedral part and the main parting direction, the approach works in the following manner. First, candidate retraction space is computed for every undercut facet. This space represents the candidate set of translation vectors that can be used by the side action to completely disengage from the undercut facet. As the next step, a discrete set of feasible, non-dominated retractions is generated. Then the undercut facets are grouped into undercut regions by performing state space search over such retractions. This search step is performed by minimizing the customizable molding cost function. After identifying the undercut regions that can share a side action, the shapes of individual side actions are computed. The approach presented in this work leads to practically an optimal solution if every connected undercut region on the part requires three or fewer side actions. Results of computational experiments that have been conducted to assess the performance of the algorithms described in the thesis have also been presented. Computational results indicate that the algorithms have acceptable computational performance, are robust enough to handle complex part geometries, and are easy to implement. It is anticipated that the results shown here will provide the foundations for developing fully automated software for designing side actions in injection molding

    Manufacturability analysis for non-feature-based objects

    Get PDF
    This dissertation presents a general methodology for evaluating key manufacturability indicators using an approach that does not require feature recognition, or feature-based design input. The contributions involve methods for computing three manufacturability indicators that can be applied in a hierarchical manner. The analysis begins with the computation of visibility, which determines the potential manufacturability of a part using material removal processes such as CNC machining. This manufacturability indicator is purely based on accessibility, without considering the actual machine setup and tooling. Then, the analysis becomes more specific by analyzing the complexity in setup planning for the part; i.e. how the part geometry can be oriented to a cutting tool in an accessible manner. This indicator establishes if the part geometry is accessible about an axis of rotation, namely, whether it can be manufactured on a 4th-axis indexed machining system. The third indicator is geometric machinability, which is computed for each machining operation to indicate the actual manufacturability when employing a cutting tool with specific shape and size. The three manufacturability indicators presented in this dissertation are usable as steps in a process; however they can be executed alone or hierarchically in order to render manufacturability information. At the end of this dissertation, a Multi-Layered Visibility Map is proposed, which would serve as a re-design mechanism that can guide a part design toward increased manufacturability

    Algorithms for generating multi-stage molding plans for articulated assemblies

    Get PDF
    Plastic products such as toys with articulated arms, legs, and heads are traditionally produced by first molding individual components separately, and then assembling them together. A recent alternative, referred to as in-mold assembly process, performs molding and assembly steps concurrently inside the mold itself. The most common technique of performing in-mold assembly is through multi-stage molding, in which the various components of an assembly are injected in a sequence of molding stages to produce the final assembly. Multi-stage molding produces better-quality articulated products at a lower cost. It however, gives rise to new mold design challenges that are absent from traditional molding. We need to develop a molding plan that determines the mold design parameters and sequence of molding stages. There are currently no software tools available to generate molding plans. It is difficult to perform the planning manually because it involves evaluating large number of combinations and solving complex geometric reasoning problems. This dissertation investigates the problem of generating multi-stage molding plans for articulated assemblies. The multi-stage molding process is studied and the underlying governing principles and constraints are identified. A hybrid planning framework that combines elements from generative and variant techniques is developed. A molding plan representation is developed to build a library of feasible molding plans for basic joints. These molding plans for individual joints are reused to generate plans for new assemblies. As part of this overall planning framework, we need to solve the following geometric subproblems -- finding assembly configuration that is both feasible and optimal, finding mold-piece regions, and constructing an optimal shutoff surface. Algorithms to solve these subproblems are developed and characterized. This dissertation makes the following contributions. The representation for molding plans provides a common platform for sharing feasible and efficient molding plans for joints. It investigates the multi-stage mold design problem from the planning perspective. The new hybrid planning framework and geometric reasoning algorithms will increase the level of automation and reduce chances of design mistakes. This will in turn reduce the cost and lead-time associated with the deployment of multi-stage molding process

    A Feature Based Approach to Automated Design of Multi-Piece Sacrificial Molds

    Get PDF
    This report describes a feature-based approach to automated design of multi-piece sacrificial molds. We use multi-piece sacrificial molds to create complex 3D polymer/ceramic parts. Multi-piece molds refer to molds that contain more than two mold components or subassemblies. Our methodology has the following three benefits over the state-of-the-art. First, by using multi-piece molds we can create complex 3D objects that are impossible to create using traditional two piece molds. Second, we make use of sacrificial molds. Therefore, using multi-piece sacrificial molds, we can create parts that pose disassembly problems for permanent molds. Third, mold design steps are significantly automated in our methodology. Therefore, we can create the functional part from the CAD model of the part in a matter of hours and so our approach can be used in small batch manufacturing environments. The basic idea behind our mold design algorithm is as follows. We first form the desired gross mold shape based on the feature-based description of the part geometry. If the desired gross mold shape is not manufacturable as a single piece, we decompose the gross mold shape into simpler shapes to make sure that each component is manufacturable using CNC machining. During the decomposition step, we account for tool accessibility to make sure that (1) each component is manufacturable, and (2) components can be assembled together to form the gross mold shape. Finally, we add assembly features to mold component shapes to facilitate easy assembly of mold components and eliminate unnecessary degree of freedoms from the final mold assembly

    Design for additive manufacturing: trends, opportunities, considerations, and constraints

    Get PDF
    © 2016 CIRP. The past few decades have seen substantial growth in Additive Manufacturing (AM) technologies. However, this growth has mainly been process-driven. The evolution of engineering design to take advantage of the possibilities afforded by AM and to manage the constraints associated with the technology has lagged behind. This paper presents the major opportunities, constraints, and economic considerations for Design for Additive Manufacturing. It explores issues related to design and redesign for direct and indirect AM production. It also highlights key industrial applications, outlines future challenges, and identifies promising directions for research and the exploitation of AM's full potential in industry
    • …
    corecore