1,331 research outputs found

    Polar codes in network quantum information theory

    Get PDF
    Polar coding is a method for communication over noisy classical channels which is provably capacity-achieving and has an efficient encoding and decoding. Recently, this method has been generalized to the realm of quantum information processing, for tasks such as classical communication, private classical communication, and quantum communication. In the present work, we apply the polar coding method to network quantum information theory, by making use of recent advances for related classical tasks. In particular, we consider problems such as the compound multiple access channel and the quantum interference channel. The main result of our work is that it is possible to achieve the best known inner bounds on the achievable rate regions for these tasks, without requiring a so-called quantum simultaneous decoder. Thus, our work paves the way for developing network quantum information theory further without requiring a quantum simultaneous decoder.Comment: 18 pages, 2 figures, v2: 10 pages, double column, version accepted for publicatio

    Shadow Tomography of Quantum States

    Full text link
    We introduce the problem of *shadow tomography*: given an unknown DD-dimensional quantum mixed state ρ\rho, as well as known two-outcome measurements E1,,EME_{1},\ldots,E_{M}, estimate the probability that EiE_{i} accepts ρ\rho, to within additive error ε\varepsilon, for each of the MM measurements. How many copies of ρ\rho are needed to achieve this, with high probability? Surprisingly, we give a procedure that solves the problem by measuring only O~(ε4log4MlogD)\widetilde{O}\left( \varepsilon^{-4}\cdot\log^{4} M\cdot\log D\right) copies. This means, for example, that we can learn the behavior of an arbitrary nn-qubit state, on all accepting/rejecting circuits of some fixed polynomial size, by measuring only nO(1)n^{O\left( 1\right)} copies of the state. This resolves an open problem of the author, which arose from his work on private-key quantum money schemes, but which also has applications to quantum copy-protected software, quantum advice, and quantum one-way communication. Recently, building on this work, Brand\~ao et al. have given a different approach to shadow tomography using semidefinite programming, which achieves a savings in computation time.Comment: 29 pages, extended abstract appeared in Proceedings of STOC'2018, revised to give slightly better upper bound (1/eps^4 rather than 1/eps^5) and lower bounds with explicit dependence on the dimension

    Power vs. Spectrum 2-D Sensing in Energy Harvesting Cognitive Radio Networks

    Full text link
    Energy harvester based cognitive radio is a promising solution to address the shortage of both spectrum and energy. Since the spectrum access and power consumption patterns are interdependent, and the power value harvested from certain environmental sources are spatially correlated, the new power dimension could provide additional information to enhance the spectrum sensing accuracy. In this paper, the Markovian behavior of the primary users is considered, based on which we adopt a hidden input Markov model to specify the primary vs. secondary dynamics in the system. Accordingly, we propose a 2-D spectrum and power (harvested) sensing scheme to improve the primary user detection performance, which is also capable of estimating the primary transmit power level. Theoretical and simulated results demonstrate the effectiveness of the proposed scheme, in term of the performance gain achieved by considering the new power dimension. To the best of our knowledge, this is the first work to jointly consider the spectrum and power dimensions for the cognitive primary user detection problem

    Faithful Squashed Entanglement

    Get PDF
    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, strictly positive if and only if the state is entangled. We derive the bound on squashed entanglement from a bound on quantum conditional mutual information, which is used to define squashed entanglement and corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured by the one-way LOCC norm, an operationally-motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and one-directional classical communication between the parties. A similar result for the Frobenius or Euclidean norm follows immediately. The result has two applications in complexity theory. The first is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in one-way LOCC or Euclidean norm. The second concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to one-way LOCC operations thereby providing a new characterisation of the complexity class QMA.Comment: 24 pages, 1 figure, 1 table. Due to an error in the published version, claims have been weakened from the LOCC norm to the one-way LOCC nor

    A Purely Symbol-Based Precoded and LDPC-Coded Iterative-Detection Assisted Sphere-Packing Modulated Space-Time Coding Scheme

    No full text
    In this contribution, we propose a purely symbol-based LDPC-coded scheme based on a Space-Time Block Coding (STBC) signal construction method that combines orthogonal design with sphere packing, referred to here as (STBCSP). We demonstrate that useful performance improvements may be attained when sphere packing aided modulation is concatenated with non-binary LDPC especially, when performing purely symbol-based turbo detection by exchanging extrinsic information between the non-binary LDPC decoder and a rate-1 non-binary inner precoder. We also investigate the convergence behaviour of this symbol-based concatenated scheme with the aid of novel non-binary Extrinsic Information Transfer (EXIT) Charts. The proposed symbol-based turbo-detected STBC-SP scheme exhibits a 'turbo-cliff' at Eb/N0 = 5.0 dB and achieves an Eb/N0 gain of 19.2dB at a BER of 10-5 over Alamouti’s scheme

    Foundational nonuniform (co)datatypes for higher-order logic

    Get PDF
    Nonuniform (or “nested” or “heterogeneous”) datatypes are recursively defined types in which the type arguments vary recursively. They arise in the implementation of finger trees and other efficient functional data structures. We show how to reduce a large class of nonuniform datatypes and codatatypes to uniform types in higher-order logic. We programmed this reduction in the Isabelle/HOL proof assistant, thereby enriching its specification language. Moreover, we derive (co)recusion and (co)induction principles based on a weak variant of parametricity
    corecore