8,425 research outputs found

    Modelling and trading the Greek stock market with gene expression and genetic programing algorithms

    Get PDF
    This paper presents an application of the gene expression programming (GEP) and integrated genetic programming (GP) algorithms to the modelling of ASE 20 Greek index. GEP and GP are robust evolutionary algorithms that evolve computer programs in the form of mathematical expressions, decision trees or logical expressions. The results indicate that GEP and GP produce significant trading performance when applied to ASE 20 and outperform the well-known existing methods. The trading performance of the derived models is further enhanced by applying a leverage filter

    Study on stock trading and portfolio optimization using genetic network programming

    Get PDF
    制度:新 ; 報告番号:甲3002号 ; 学位の種類:博士(工学) ; 授与年月日: 2010/3/15 ; 早大学位記番号:新525

    Modeling Financial Time Series with Artificial Neural Networks

    Full text link
    Financial time series convey the decisions and actions of a population of human actors over time. Econometric and regressive models have been developed in the past decades for analyzing these time series. More recently, biologically inspired artificial neural network models have been shown to overcome some of the main challenges of traditional techniques by better exploiting the non-linear, non-stationary, and oscillatory nature of noisy, chaotic human interactions. This review paper explores the options, benefits, and weaknesses of the various forms of artificial neural networks as compared with regression techniques in the field of financial time series analysis.CELEST, a National Science Foundation Science of Learning Center (SBE-0354378); SyNAPSE program of the Defense Advanced Research Project Agency (HR001109-03-0001

    A Genetic Programming Approach to Geometrical Digital Content Modeling in Web Oriented Applications

    Get PDF
    The paper presents the advantages of using genetic techniques in web oriented problems. The specific area of genetic programming applications that paper approaches is content modeling. The analyzed digital content is formed through the accumulation of targeted geometrical structured entities that have specific characteristics and behavior. The accumulated digital content is analyzed and specific features are extracted in order to develop an analysis system through the use of genetic programming. An experiment is presented which evolves a model based on specific features of each geometrical structured entity in the digital content base. The results show promising expectations with a low error rate which provides fair approximations related to analyzed geometrical structured entities.Genetic Algorithm, Genetic Programming, Fitness, Geometrical Structured Entities, Analysis

    A survey on financial applications of metaheuristics

    Get PDF
    Modern heuristics or metaheuristics are optimization algorithms that have been increasingly used during the last decades to support complex decision-making in a number of fields, such as logistics and transportation, telecommunication networks, bioinformatics, finance, and the like. The continuous increase in computing power, together with advancements in metaheuristics frameworks and parallelization strategies, are empowering these types of algorithms as one of the best alternatives to solve rich and real-life combinatorial optimization problems that arise in a number of financial and banking activities. This article reviews some of the works related to the use of metaheuristics in solving both classical and emergent problems in the finance arena. A non-exhaustive list of examples includes rich portfolio optimization, index tracking, enhanced indexation, credit risk, stock investments, financial project scheduling, option pricing, feature selection, bankruptcy and financial distress prediction, and credit risk assessment. This article also discusses some open opportunities for researchers in the field, and forecast the evolution of metaheuristics to include real-life uncertainty conditions into the optimization problems being considered.This work has been partially supported by the Spanish Ministry of Economy and Competitiveness (TRA2013-48180-C3-P, TRA2015-71883-REDT), FEDER, and the Universitat Jaume I mobility program (E-2015-36)

    Can Deep Learning Techniques Improve the Risk Adjusted Returns from Enhanced Indexing Investment Strategies

    Get PDF
    Deep learning techniques have been widely applied in the field of stock market prediction particularly with respect to the implementation of active trading strategies. However, the area of portfolio management and passive portfolio management in particular has been much less well served by research to date. This research project conducts an investigation into the science underlying the implementation of portfolio management strategies in practice focusing on enhanced indexing strategies. Enhanced indexing is a passive management approach which introduces an element of active management with the aim of achieving a level of active return through small adjustments to the portfolio weights. It then proceeds to investigate current applications of deep learning techniques in the field of financial market predictions and also in the specific area of portfolio management. A series of successively deeper neural network models were then developed and assessed in terms of their ability to accurately predict whether a sample of stocks would either outperform or underperform the selected benchmark index. The predictions generated by these models were then used to guide the adjustment of portfolio weightings to implement and forward test an enhanced indexing strategy on a hypothetical stock portfolio

    Evolving investment models using genetic network programming and genetic relation algorithm

    Get PDF
    制度:新 ; 報告番号:甲3442号 ; 学位の種類:博士(工学) ; 授与年月日:15-Sep-11 ; 早大学位記番号:新576
    corecore