2,413 research outputs found

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    A Coevolutionary Particle Swarm Algorithm for Bi-Level Variational Inequalities: Applications to Competition in Highway Transportation Networks

    Get PDF
    A climate of increasing deregulation in traditional highway transportation, where the private sector has an expanded role in the provision of traditional transportation services, provides a background for practical policy issues to be investigated. One of the key issues of interest, and the focus of this chapter, would be the equilibrium decision variables offered by participants in this market. By assuming that the private sector participants play a Nash game, the above problem can be described as a Bi-Level Variational Inequality (BLVI). Our problem differs from the classical Cournot-Nash game because each and every player’s actions is constrained by another variational inequality describing the equilibrium route choice of users on the network. In this chapter, we discuss this BLVI and suggest a heuristic coevolutionary particle swarm algorithm for its resolution. Our proposed algorithm is subsequently tested on example problems drawn from the literature. The numerical experiments suggest that the proposed algorithm is a viable solution method for this problem

    The Dynamic Multi-objective Multi-vehicle Covering Tour Problem

    Get PDF
    This work introduces a new routing problem called the Dynamic Multi-Objective Multi-vehicle Covering Tour Problem (DMOMCTP). The DMOMCTPs is a combinatorial optimization problem that represents the problem of routing multiple vehicles to survey an area in which unpredictable target nodes may appear during execution. The formulation includes multiple objectives that include minimizing the cost of the combined tour cost, minimizing the longest tour cost, minimizing the distance to nodes to be covered and maximizing the distance to hazardous nodes. This study adapts several existing algorithms to the problem with several operator and solution encoding variations. The efficacy of this set of solvers is measured against six problem instances created from existing Traveling Salesman Problem instances which represent several real countries. The results indicate that repair operators, variable length solution encodings and variable-length operators obtain a better approximation of the true Pareto front

    Multiobjective path planner for UAVs based on genetic algorithms

    Get PDF
    This paper presents a path planner for Unmanned Air Vehicles (UAVs) based on Genetic Algorithms (GA) that obtains a feasible and optimal 3-D path for the UAV. It uses 9 different objective values which are calculated with a realistic model of the UAV and the environment and which are structured with 3 levels of priorities. Our planner works globally offline as well as locally online, which means that the algorithm can recalculate parts of the generated path in order to avoid unexpected risks. Finally, the effectiveness of the solutions given by this planner has been successfully tested against a simulator that contains the complete model of the UAV and the environment

    A hybrid genetic approach to solve real make-to-order job shop scheduling problems

    Get PDF
    Tese (doutorado) - Universidade Federal de Santa Catarina, Centro TecnologicoProcedimentos de busca local (ex. busca tabu) e algoritmos genéticos têm apresentado excelentes resultados em problemas clássicos de programação da produção em ambientes job shop. No entanto, estas abordagens apresentam pobres habilidades de modelamento e poucas aplicações com restrições de ambientes reais de produção têm sido publicadas. Além disto, os espaços de busca considerados nestas aplicações são nomlalmente incompletos e as restrições reais são poucas e dependentes do problema em questão. Este trabalho apresenta uma abordagem genética híbrida para resolver problemas de programação em ambientes job shop com grande número de restrições reais, tais como produtos com vários níveis de submontagem, planos de processamento altemativos para componentes e recursos alternativos para operações, exigência de vários recursos para executar uma operação (ex., máquina, ferramentas, operadores), calendários para todos os recursos, sobreposição de operações, restrições de disponibilidade de matéria-prima e componentes comprados de terceiros, e tempo de setup dependente da sequência de operações. A abordagem também considera funções de avaliação multiobjetivas. O sistema usa algoritmos modificados de geração de programação, que incorporam várias heurísticas de apoio à decisão, para obter um conjunto de soluções iniciais. Cada solução inicial é melhorada por um algoritmo de subida de encosta. Então, um algoritmo genético híbrido com procedimentos de busca local é aplicado ao conjunto inicial de soluções localmente ótimas. Ao utilizar técnicas de programação de alta perfomlance (heurísticas construtivas, procedimentos de busca local e algoritmos genéticos) em problemas reais de programação da produção, este trabalho reduziu o abismo existente entre a teoria e a prática da programação da produção

    OPTIMIZATION OF RAILWAY TRANSPORTATION HAZMATS AND REGULAR COMMODITIES

    Get PDF
    Transportation of dangerous goods has been receiving more attention in the realm of academic and scientific research during the last few decades as countries have been increasingly becoming industrialized throughout the world, thereby making Hazmats an integral part of our life style. However, the number of scholarly articles in this field is not as many as those of other areas in SCM. Considering the low-probability-and-high-consequence (LPHC) essence of transportation of Hazmats, on the one hand, and immense volume of shipments accounting for more than hundred tons in North America and Europe, on the other, we can safely state that the number of scholarly articles and dissertations have not been proportional to the significance of the subject of interest. On this ground, we conducted our research to contribute towards further developing the domain of Hazmats transportation, and sustainable supply chain management (SSCM), in general terms. Transportation of Hazmats, from logistical standpoint, may include all modes of transport via air, marine, road and rail, as well as intermodal transportation systems. Although road shipment is predominant in most of the literature, railway transportation of Hazmats has proven to be a potentially significant means of transporting dangerous goods with respect to both economies of scale and risk of transportation; these factors, have not just given rise to more thoroughly investigation of intermodal transportation of Hazmats using road and rail networks, but has encouraged the competition between rail and road companies which may indeed have some inherent advantages compared to the other medium due to their infrastructural and technological backgrounds. Truck shipment has ostensibly proven to be providing more flexibility; trains, per contra, provide more reliability in terms of transport risk for conveying Hazmats in bulks. In this thesis, in consonance with the aforementioned motivation, we provide an introduction into the hazardous commodities shipment through rail network in the first chapter of the thesis. Providing relevant statistics on the volume of Hazmat goods, number of accidents, rate of incidents, and rate of fatalities and injuries due to the incidents involving Hazmats, will shed light onto the significance of the topic under study. As well, we review the most pertinent articles while putting more emphasis on the state-of-the-art papers, in chapter two. Following the discussion in chapter 3 and looking at the problem from carrier company’s perspective, a mixed integer quadratically constraint problem (MIQCP) is developed which seeks for the minimization of transportation cost under a set of constraints including those associating with Hazmats. Due to the complexity of the problem, the risk function has been piecewise linearized using a set of auxiliary variables, thereby resulting in an MIP problem. Further, considering the interests of both carrier companies and regulatory agencies, which are minimization of cost and risk, respectively, a multiobjective MINLP model is developed, which has been reduced to an MILP through piecewise linearization of the risk term in the objective function. For both single-objective and multiobjective formulations, model variants with bifurcated and nonbifurcated flows have been presented. Then, in chapter 4, we carry out experiments considering two main cases where the first case presents smaller instances of the problem and the second case focuses on a larger instance of the problem. Eventually, in chapter five, we conclude the dissertation with a summary of the overall discussion as well as presenting some comments on avenues of future work
    corecore