5,773 research outputs found

    Study on efficient planning for advanced logistics network model based on robust genetic algorithm

    Get PDF
    制度:新 ; 報告番号:甲3000号 ; 学位の種類:博士(工学) ; 授与年月日:2010/2/22 ; 早大学位記番号:新525

    HOPX Crossover Operator for the Fixed Charge Logistic Model with Priority Based Encoding

    Get PDF
    In this paper, we are interested to an important Logistic problem modelised us optimization problem. It is the fixed charge transportation problem (FCTP) where the aim is to find the optimal solution which minimizes the objective function containig two costs, variable costs proportional to the amount shipped and fixed cost regardless of the quantity transported. To solve this kind of problem, metaheuristics and evolutionary methods should be applied. Genetic algorithms (GAs) seem to be one of such hopeful approaches which is based both on probability operators (Crossover and mutation) responsible for widen the solution space. The different characteristics of those operators influence on the performance and the quality of the genetic algorithm. In order to improve the performance of the GA to solve the FCTP, we propose a new adapted crossover operator called HOPX with the priority-based encoding by hybridizing the characteristics of the two most performent operators, the Order Crossover (OX) and Position-based crossover (PX). Numerical results are presented and discussed for several instances showing the performance of the developed approach to obtain optimal solution in reduced time in comparison to GAs with other crossover operators

    A modified priority-based encoding for design of a closed-loop supply chain network using a discrete league championship algorithm

    Get PDF
    In a closed-loop supply chain network, the aim is to ensure a smooth fow of materials and attaining the maximum value from returning and end-of-life goods. Tis paper presents a single-objective deterministic mixed integer linear programming (MILP) model for the closed-loop supply chain (CLSC) network design problem consisting of plants, collection centers, disposal centers, and customer zones. Our model minimizes the total costs comprising fxed opening cost of plants, collection, disposal centers, and transportation costs of products among the nodes. As supply chain network design problems belong to the class of NP-hard problems, a novel league championship algorithm (LCA) with a modifed priority-based encoding is applied to fnd a near-optimal solution. New operators are defned for the LCA to search the discrete space. Numerical comparison of our proposed encoding with the existing approaches in the literature is indicative of the high quality performance of the proposed encoding

    Evaluation of scalarization methods and NSGA-II/SPEA2 genetic algorithms for multi-objective optimization of green supply chain design

    Get PDF
    This paper considers supply chain design in green logistics. We formulate the choice of an environmentally conscious chain design as a multi-objective optimization (MOO) problem and approximate the Pareto front using the weighted sum and epsilon constraint scalarization methods as well as with two popular genetic algorithms, NSGA-II and SPEA2. We extend an existing case study of green supply chain design in the South Eastern Europe region by optimizing simultaneously costs, CO2 and fine dust (also known as PM - Particulate Matters) emissions. The results show that in the considered case the scalarization methods outperform genetic algorithms in finding efficient solutions and that the CO2 and PM emissions can be lowered by accepting a marginal increase of costs over their global minimum

    A modified priority-based encoding for design of a closed-loop supply chain network using a discrete league championship algorithm

    Get PDF
    In a closed-loop supply chain network, the aim is to ensure a smooth fow of materials and attaining the maximum value from returning and end-of-life goods. Tis paper presents a single-objective deterministic mixed integer linear programming (MILP) model for the closed-loop supply chain (CLSC) network design problem consisting of plants, collection centers, disposal centers, and customer zones. Our model minimizes the total costs comprising fxed opening cost of plants, collection, disposal centers, and transportation costs of products among the nodes. As supply chain network design problems belong to the class of NP-hard problems, a novel league championship algorithm (LCA) with a modifed priority-based encoding is applied to fnd a near-optimal solution. New operators are defned for the LCA to search the discrete space. Numerical comparison of our proposed encoding with the existing approaches in the literature is indicative of the high quality performance of the proposed encoding

    Integrated Models and Algorithms for Automotive Supply Chain Optimization

    Get PDF
    The automotive industry is one of the most important economic sectors, and the efficiency of its supply chain is crucial for ensuring its profitability. Developing and applying techniques to optimize automotive supply chains can lead to favorable economic outcomes and customer satisfaction. In this dissertation, we develop integrated models and algorithms for automotive supply chain optimization. Our objective is to explore methods that can increase the competitiveness of the automotive supply chain via maximizing efficiency and service levels. Based on interactions with an automotive industry supplier, we define an automotive supply chain planning problem at a detailed operational level while taking into account realistic assumptions such as sequence-dependent setups on parallel machines, auxiliary resource assignments, and multiple types of costs. We model the research problem of interest using mixed-integer linear programming. Given the problem’s NP-hard complexity, we develop a hybrid metaheuristic approach, including a constructive heuristic and an effective encoding-decoding strategy, to minimize the total integrated cost of production setups, inventory holding, transportation, and production outsourcing. Furthermore, since there are often conflicting objectives of interest in automotive supply chains, we investigate simultaneously optimizing total cost and customer service level via a multiobjective optimization methodology. Finally, we analyze the impact of adding an additional transportation mode, which offers a cost vs. delivery time option to the manufacturer, on total integrated cost. Our results demonstrate the promising performance of the proposed solution approaches to analyze the integrated cost minimization problem to near optimality in a timely manner, lowering the cost of the automotive supply chain. The proposed bicriteria, hybrid metaheuristic offers decision makers several options to trade-off cost with service level via identified Pareto-optimal solutions. The effect of the available additional transportation mode’s lead time is found to be bigger than its cost on the total integrated cost measure under study

    Model and algorithm of two-stage distribution location routing with hard time window for city cold-chain logistics

    Get PDF
    Taking cold-chain logistics as the research background and combining with the overall optimisation of logistics distribution networks, we develop two-stage distribution location-routing model with the minimum total cost as the objective function and varying vehicle capacity in different delivery stages. A hybrid genetic algorithm is designed based on coupling and collaboration of the two-stage routing and transfer stations. The validity and feasibility of the model and algorithm are verified by conducting a randomly generated test. The optimal solutions for different objective functions of two-stage distribution location-routing are compared and analysed. Results turn out that for different distribution objectives, different distribution schemes should be employed. Finally, we compare the two-stage distribution location-routing to single-stage vehicle routing problems. It is found that a two-stage distribution location-routing system is feasible and effective for the cold-chain logistics network, and can decrease distribution costs for cold-chain logistics enterprises.Peer ReviewedPostprint (published version

    Hybrid Meta-Heuristics for Robust Scheduling

    Get PDF
    The production and delivery of rapidly perishable goods in distributed supply networks involves a number of tightly coupled decision and optimization problems regarding the just-in-time production scheduling and the routing of the delivery vehicles in order to satisfy strict customer specified time-windows. Besides dealing with the typical combinatorial complexity related to activity assignment and synchronization, effective methods must also provide robust schedules, coping with the stochastic perturbations (typically transportation delays) affecting the distribution process. In this paper, we propose a novel metaheuristic approach for robust scheduling. Our approach integrates mathematical programming, multi-objective evolutionary computation, and problem-specific constructive heuristics. The optimization algorithm returns a set of solutions with different cost and risk tradeoffs, allowing the analyst to adapt the planning depending on the attitude to risk. The effectiveness of the approach is demonstrated by a real-world case concerning the production and distribution of ready-mixed concrete.Meta-Heuristics;Multi-Objective Genetic Optimization;Robust Scheduling;Supply Networks

    Use Of Genetic Algorithms in Supply Chain Management. Literature Review and Current Trends

    Get PDF
    For the past few decades SCM has been one of the main objectives in research and practice. Since that time researchers have developed a lot of methods and procedures which optimized this process. To create an efficient supply chain network the resources and factories must be tightly integrated. The most supply chain network designs have multiple layers, members, periods, products, and comparative resources constraints exist between different layers. Supply chain networks design is related to the problems which are very popular in literature. The subject of this paper is to present the variants, configurations and parameters of genetic algorithm (GA) for solving supply chain network design problems. We focus on references from 2000 to 2011. Furthermore, current trends are introduced and discussed

    Meta-heuristic based Construction Supply Chain Modelling and Optimization

    Get PDF
    Driven by the severe competition within the construction industry, the necessity of improving and optimizing the performance of construction supply chain has been aroused. This thesis proposes three problems with regard to the construction supply chain optimization from three perspectives, namely, deterministic single objective optimization, stochastic optimization and multi-objective optimization respectively. Mathematical models for each problem are constructed accordingly and meta-heuristic algorithms are developed and applied for resolving these three problems
    corecore