1,717 research outputs found

    Construct, Merge, Solve and Adapt: Application to the repetition-free longest common subsequence problem

    Get PDF
    In this paper we present the application of a recently proposed, general, algorithm for combinatorial optimization to the repetition-free longest common subsequence problem. The applied algorithm, which is labelled Construct, Merge, Solve & Adapt, generates sub-instances based on merging the solution components found in randomly constructed solutions. These sub-instances are subsequently solved by means of an exact solver. Moreover, the considered sub-instances are dynamically changing due to adding new solution components at each iteration, and removing existing solution components on the basis of indicators about their usefulness. The results of applying this algorithm to the repetition-free longest common subsequence problem show that the algorithm generally outperforms competing approaches from the literature. Moreover, they show that the algorithm is competitive with CPLEX for small and medium size problem instances, whereas it outperforms CPLEX for larger problem instances.Peer ReviewedPostprint (author's final draft

    Learning Character Strings via Mastermind Queries, with a Case Study Involving mtDNA

    Full text link
    We study the degree to which a character string, QQ, leaks details about itself any time it engages in comparison protocols with a strings provided by a querier, Bob, even if those protocols are cryptographically guaranteed to produce no additional information other than the scores that assess the degree to which QQ matches strings offered by Bob. We show that such scenarios allow Bob to play variants of the game of Mastermind with QQ so as to learn the complete identity of QQ. We show that there are a number of efficient implementations for Bob to employ in these Mastermind attacks, depending on knowledge he has about the structure of QQ, which show how quickly he can determine QQ. Indeed, we show that Bob can discover QQ using a number of rounds of test comparisons that is much smaller than the length of QQ, under reasonable assumptions regarding the types of scores that are returned by the cryptographic protocols and whether he can use knowledge about the distribution that QQ comes from. We also provide the results of a case study we performed on a database of mitochondrial DNA, showing the vulnerability of existing real-world DNA data to the Mastermind attack.Comment: Full version of related paper appearing in IEEE Symposium on Security and Privacy 2009, "The Mastermind Attack on Genomic Data." This version corrects the proofs of what are now Theorems 2 and 4

    Composing Distributed Data-intensive Web Services Using a Flexible Memetic Algorithm

    Full text link
    Web Service Composition (WSC) is a particularly promising application of Web services, where multiple individual services with specific functionalities are composed to accomplish a more complex task, which must fulfil functional requirements and optimise Quality of Service (QoS) attributes, simultaneously. Additionally, large quantities of data, produced by technological advances, need to be exchanged between services. Data-intensive Web services, which manipulate and deal with those data, are of great interest to implement data-intensive processes, such as distributed Data-intensive Web Service Composition (DWSC). Researchers have proposed Evolutionary Computing (EC) fully-automated WSC techniques that meet all the above factors. Some of these works employed Memetic Algorithms (MAs) to enhance the performance of EC through increasing its exploitation ability of in searching neighbourhood area of a solution. However, those works are not efficient or effective. This paper proposes an MA-based approach to solving the problem of distributed DWSC in an effective and efficient manner. In particular, we develop an MA that hybridises EC with a flexible local search technique incorporating distance of services. An evaluation using benchmark datasets is carried out, comparing existing state-of-the-art methods. Results show that our proposed method has the highest quality and an acceptable execution time overall.Comment: arXiv admin note: text overlap with arXiv:1901.0556

    Privacy-Preserving Genetic Relatedness Test

    Get PDF
    An increasing number of individuals are turning to Direct-To-Consumer (DTC) genetic testing to learn about their predisposition to diseases, traits, and/or ancestry. DTC companies like 23andme and Ancestry.com have started to offer popular and affordable ancestry and genealogy tests, with services allowing users to find unknown relatives and long-distant cousins. Naturally, access and possible dissemination of genetic data prompts serious privacy concerns, thus motivating the need to design efficient primitives supporting private genetic tests. In this paper, we present an effective protocol for privacy-preserving genetic relatedness test (PPGRT), enabling a cloud server to run relatedness tests on input an encrypted genetic database and a test facility's encrypted genetic sample. We reduce the test to a data matching problem and perform it, privately, using searchable encryption. Finally, a performance evaluation of hamming distance based PP-GRT attests to the practicality of our proposals.Comment: A preliminary version of this paper appears in the Proceedings of the 3rd International Workshop on Genome Privacy and Security (GenoPri'16
    • …
    corecore