311 research outputs found

    ModuleDigger: an itemset mining framework for the detection of cis-regulatory modules

    Get PDF
    Background: The detection of cis-regulatory modules (CRMs) that mediate transcriptional responses in eukaryotes remains a key challenge in the postgenomic era. A CRM is characterized by a set of co-occurring transcription factor binding sites (TFBS). In silico methods have been developed to search for CRMs by determining the combination of TFBS that are statistically overrepresented in a certain geneset. Most of these methods solve this combinatorial problem by relying on computational intensive optimization methods. As a result their usage is limited to finding CRMs in small datasets (containing a few genes only) and using binding sites for a restricted number of transcription factors (TFs) out of which the optimal module will be selected. Results: We present an itemset mining based strategy for computationally detecting cis-regulatory modules (CRMs) in a set of genes. We tested our method by applying it on a large benchmark data set, derived from a ChIP-Chip analysis and compared its performance with other well known cis-regulatory module detection tools. Conclusion: We show that by exploiting the computational efficiency of an itemset mining approach and combining it with a well-designed statistical scoring scheme, we were able to prioritize the biologically valid CRMs in a large set of coregulated genes using binding sites for a large number of potential TFs as input

    Unveiling combinatorial regulation through the combination of ChIP information and in silico cis-regulatory module detection

    Get PDF
    Computationally retrieving biologically relevant cis-regulatory modules (CRMs) is not straightforward. Because of the large number of candidates and the imperfection of the screening methods, many spurious CRMs are detected that are as high scoring as the biologically true ones. Using ChIP-information allows not only to reduce the regions in which the binding sites of the assayed transcription factor (TF) should be located, but also allows restricting the valid CRMs to those that contain the assayed TF (here referred to as applying CRM detection in a query-based mode). In this study, we show that exploiting ChIP-information in a query-based way makes in silico CRM detection a much more feasible endeavor. To be able to handle the large datasets, the query-based setting and other specificities proper to CRM detection on ChIP-Seq based data, we developed a novel powerful CRM detection method 'CPModule'. By applying it on a well-studied ChIP-Seq data set involved in self-renewal of mouse embryonic stem cells, we demonstrate how our tool can recover combinatorial regulation of five known TFs that are key in the self-renewal of mouse embryonic stem cells. Additionally, we make a number of new predictions on combinatorial regulation of these five key TFs with other TFs documented in TRANSFAC

    Integrated Regulatory and Metabolic Networks of the Marine Diatom Phaeodactylum tricornutum Predict the Response to Rising CO2 Levels.

    Get PDF
    Diatoms are eukaryotic microalgae that are responsible for up to 40% of the ocean's primary productivity. How diatoms respond to environmental perturbations such as elevated carbon concentrations in the atmosphere is currently poorly understood. We developed a transcriptional regulatory network based on various transcriptome sequencing expression libraries for different environmental responses to gain insight into the marine diatom's metabolic and regulatory interactions and provide a comprehensive framework of responses to increasing atmospheric carbon levels. This transcriptional regulatory network was integrated with a recently published genome-scale metabolic model of Phaeodactylum tricornutum to explore the connectivity of the regulatory network and shared metabolites. The integrated regulatory and metabolic model revealed highly connected modules within carbon and nitrogen metabolism. P.Ā tricornutum's response to rising carbon levels was analyzed by using the recent genome-scale metabolic model with cross comparison to experimental manipulations of carbon dioxide. IMPORTANCE Using a systems biology approach, we studied the response of the marine diatom Phaeodactylum tricornutum to changing atmospheric carbon concentrations on an ocean-wide scale. By integrating an available genome-scale metabolic model and a newly developed transcriptional regulatory network inferred from transcriptome sequencing expression data, we demonstrate that carbon metabolism and nitrogen metabolism are strongly connected and the genes involved are coregulated in this model diatom. These tight regulatory constraints could play a major role during the adaptation of P.Ā tricornutum to increasing carbon levels. The transcriptional regulatory network developed can be further used to study the effects of different environmental perturbations on P.Ā tricornutum's metabolism

    TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis

    Get PDF
    We present the second and improved release of the TOUCAN workbench for cis-regulatory sequence analysis. TOUCAN implements and integrates fast state-of-the-art methods and strategies in gene regulation bioinformatics, including algorithms for comparative genomics and for the detection of cis-regulatory modules. This second release of TOUCAN has become open source and thereby carries the potential to evolve rapidly. The main goal of TOUCAN is to allow a user to come to testable hypotheses regarding the regulation of a gene or of a set of co-regulated genes. TOUCAN can be launched from this location:

    Cis-regulatory module detection using constraint programming

    Get PDF
    We propose a method for finding CRMs in a set of co-regulated genes. Each CRM consists of a set of binding sites of transcription factors. We wish to find CRMs involving the same transcription factors in multiple sequences. Finding such a combination of transcription factors is inherently a combinatorial problem. We solve this problem by combining the principles of itemset mining and constraint programming. The constraints involve the putative binding sites of transcription factors, the number of sequences in which they co-occur and the proximity of the binding sites. Genomic background sequences are used to assess the significance of the modules. We experimentally validate our approach and compare it with state-of-the-art techniques

    Motif Discovery through Predictive Modeling of Gene Regulation

    Full text link
    We present MEDUSA, an integrative method for learning motif models of transcription factor binding sites by incorporating promoter sequence and gene expression data. We use a modern large-margin machine learning approach, based on boosting, to enable feature selection from the high-dimensional search space of candidate binding sequences while avoiding overfitting. At each iteration of the algorithm, MEDUSA builds a motif model whose presence in the promoter region of a gene, coupled with activity of a regulator in an experiment, is predictive of differential expression. In this way, we learn motifs that are functional and predictive of regulatory response rather than motifs that are simply overrepresented in promoter sequences. Moreover, MEDUSA produces a model of the transcriptional control logic that can predict the expression of any gene in the organism, given the sequence of the promoter region of the target gene and the expression state of a set of known or putative transcription factors and signaling molecules. Each motif model is either a kk-length sequence, a dimer, or a PSSM that is built by agglomerative probabilistic clustering of sequences with similar boosting loss. By applying MEDUSA to a set of environmental stress response expression data in yeast, we learn motifs whose ability to predict differential expression of target genes outperforms motifs from the TRANSFAC dataset and from a previously published candidate set of PSSMs. We also show that MEDUSA retrieves many experimentally confirmed binding sites associated with environmental stress response from the literature.Comment: RECOMB 200

    Transcriptome-based Gene Networks for Systems-level Analysis of Plant Gene Functions

    Get PDF
    Present day genomic technologies are evolving at an unprecedented rate, allowing interrogation of cellular activities with increasing breadth and depth. However, we know very little about how the genome functions and what the identified genes do. The lack of functional annotations of genes greatly limits the post-analytical interpretation of new high throughput genomic datasets. For plant biologists, the problem is much severe. Less than 50% of all the identified genes in the model plant Arabidopsis thaliana, and only about 20% of all genes in the crop model Oryza sativa have some aspects of their functions assigned. Therefore, there is an urgent need to develop innovative methods to predict and expand on the currently available functional annotations of plant genes. With open-access catching the ā€˜pulseā€™ of modern day molecular research, an integration of the copious amount of transcriptome datasets allows rapid prediction of gene functions in specific biological contexts, which provide added evidence over traditional homology-based functional inference. The main goal of this dissertation was to develop data analysis strategies and tools broadly applicable in systems biology research. Two user friendly interactive web applications are presented: The Rice Regulatory Network (RRN) captures an abiotic-stress conditioned gene regulatory network designed to facilitate the identification of transcription factor targets during induction of various environmental stresses. The Arabidopsis Seed Active Network (SANe) is a transcriptional regulatory network that encapsulates various aspects of seed formation, including embryogenesis, endosperm development and seed-coat formation. Further, an edge-set enrichment analysis algorithm is proposed that uses network density as a parameter to estimate the gain or loss in correlation of pathways between two conditionally independent coexpression networks

    A survey of DNA motif finding algorithms

    Get PDF
    Background: Unraveling the mechanisms that regulate gene expression is a major challenge in biology. An important task in this challenge is to identify regulatory elements, especially the binding sites in deoxyribonucleic acid (DNA) for transcription factors. These binding sites are short DNA segments that are called motifs. Recent advances in genome sequence availability and in high-throughput gene expression analysis technologies have allowed for the development of computational methods for motif finding. As a result, a large number of motif finding algorithms have been implemented and applied to various motif models over the past decade. This survey reviews the latest developments in DNA motif finding algorithms.Results: Earlier algorithms use promoter sequences of coregulated genes from single genome and search for statistically overrepresented motifs. Recent algorithms are designed to use phylogenetic footprinting or orthologous sequences and also an integrated approach where promoter sequences of coregulated genes and phylogenetic footprinting are used. All the algorithms studied have been reported to correctly detect the motifs that have been previously detected by laboratory experimental approaches, and some algorithms were able to find novel motifs. However, most of these motif finding algorithms have been shown to work successfully in yeast and other lower organisms, but perform significantly worse in higher organisms.Conclusion: Despite considerable efforts to date, DNA motif finding remains a complex challenge for biologists and computer scientists. Researchers have taken many different approaches in developing motif discovery tools and the progress made in this area of research is very encouraging. Performance comparison of different motif finding tools and identification of the best tools have proven to be a difficult task because tools are designed based on algorithms and motif models that are diverse and complex and our incomplete understanding of the biology of regulatory mechanism does not always provide adequate evaluation of underlying algorithms over motif models.Peer reviewedComputer Scienc
    • ā€¦
    corecore