123 research outputs found

    ON SAMPLING BASED METHODS FOR THE DUBINS TRAVELING SALESMAN PROBLEM WITH NEIGHBORHOODS

    Get PDF
    In this paper, we address the problem of path planning to visit a set of regions by Dubins vehicle, which is also known as the Dubins Traveling Salesman Problem Neighborhoods (DTSPN). We propose a modification of the existing sampling-based approach to determine increasing number of samples per goal region and thus improve the solution quality if a more computational time is available. The proposed modification of the sampling-based algorithm has been compared with performance of existing approaches for the DTSPN and results of the quality of the found solutions and the required computational time are presented in the paper

    ON SAMPLING BASED METHODS FOR THE DUBINS TRAVELING SALESMAN PROBLEM WITH NEIGHBORHOODS

    Get PDF
    In this paper, we address the problem of path planning to visit a set of regions by Dubins vehicle, which is also known as the Dubins Traveling Salesman Problem Neighborhoods (DTSPN). We propose a modification of the existing sampling-based approach to determine increasing number of samples per goal region and thus improve the solution quality if a more computational time is available. The proposed modification of the sampling-based algorithm has been compared with performance of existing approaches for the DTSPN and results of the quality of the found solutions and the required computational time are presented in the paper

    THE DUBINS TRAVELING SALESMAN PROBLEM WITH CONSTRAINED COLLECTING MANEUVERS

    Get PDF
    In this paper, we introduce a variant of the Dubins traveling salesman problem (DTSP) that is called the Dubins traveling salesman problem with constrained collecting maneuvers (DTSP-CM). In contrast to the ordinary formulation of the DTSP, in the proposed DTSP-CM, the vehicle is requested to visit each target by specified collecting maneuver to accomplish the mission. The proposed problem formulation is motivated by scenarios with unmanned aerial vehicles where particular maneuvers are necessary for accomplishing the mission, such as object dropping or data collection with sensor sensitive to changes in vehicle heading. We consider existing methods for the DTSP and propose its modifications to use these methods to address a variant of the introduced DTSP-CM, where the collecting maneuvers are constrained to straight line segments

    Waypoint planning with Dubins Curves using Genetic Algorithms

    Get PDF

    An evolutionary algorithm for online, resource constrained, multi-vehicle sensing mission planning

    Full text link
    Mobile robotic platforms are an indispensable tool for various scientific and industrial applications. Robots are used to undertake missions whose execution is constrained by various factors, such as the allocated time or their remaining energy. Existing solutions for resource constrained multi-robot sensing mission planning provide optimal plans at a prohibitive computational complexity for online application [1],[2],[3]. A heuristic approach exists for an online, resource constrained sensing mission planning for a single vehicle [4]. This work proposes a Genetic Algorithm (GA) based heuristic for the Correlated Team Orienteering Problem (CTOP) that is used for planning sensing and monitoring missions for robotic teams that operate under resource constraints. The heuristic is compared against optimal Mixed Integer Quadratic Programming (MIQP) solutions. Results show that the quality of the heuristic solution is at the worst case equal to the 5% optimal solution. The heuristic solution proves to be at least 300 times more time efficient in the worst tested case. The GA heuristic execution required in the worst case less than a second making it suitable for online execution.Comment: 8 pages, 5 figures, accepted for publication in Robotics and Automation Letters (RA-L

    Shortest Dubins Path to a Circle

    Full text link
    The Dubins path problem had enormous applications in path planning for autonomous vehicles. In this paper, we consider a generalization of the Dubins path planning problem, which is to find a shortest Dubins path that starts from a given initial position and heading, and ends on a given target circle with the heading in the tangential direction. This problem has direct applications in Dubins neighborhood traveling salesman problem, obstacle avoidance Dubins path planning problem etc. We characterize the length of the four CSC paths as a function of angular position on the target circle, and derive the conditions which to find the shortest Dubins path to the target circle

    Mission Planning for Unmanned Aircraft with Genetic Algorithms

    Get PDF
    corecore