74 research outputs found

    Complicating factors in healthcare staff scheduling part 2 : case of nurse re-rostering

    Get PDF
    Nurse re-rostering is a highly constrained combinatorial problem characterized with several complicating features. This paper explores recent case studies on nurse re-rostering and identifies the common complicating factors in the nurse re-rostering problem. A taxonomic analysis of complicating factors is then presented. Further, an evaluation of the complicating factors and the solution methods applied, showing the shortfalls of the approaches. A more robust and appropriate approach is realized for the complex problem. Future approaches should be intelligent, interactive, making use of a combination of fuzzy theory, fuzzy logic, multi-criteria decision making, and expert systems techniques

    Fuzzy multi-criteria simulated evolution for nurse re-rostering

    Get PDF
    Abstract: In a fuzzy environment where the decision making involves multiple criteria, fuzzy multi-criteria decision making approaches are a viable option. The nurse re-rostering problem is a typical complex problem situation, where scheduling decisions should consider fuzzy human preferences, such as nurse preferences, decision maker’s choices, and patient expectations. For effective nurse schedules, fuzzy theoretic evaluation approaches have to be used to incorporate the fuzzy human preferences and choices. The present study seeks to develop a fuzzy multi-criteria simulated evolution approach for the nurse re-rostering problem. Experimental results show that the fuzzy multi-criteria approach has a potential to solve large scale problems within reasonable computation times

    Solving a Bi-objective Nurse Rerostering Problem by Using a Utopic Pareto Genetic Heuristic

    Get PDF
    Nurse rerostering arises when at least one nurse announces that she will be unable to undertake the tasks previously assigned to her. The problem amounts to building a new roster that satisfies the hard constraints already met by the current one and, as much as possible, fulfils two groups of soft constraints which define the two objectives to be attained. A bi-objective genetic heuristic was designed on the basis of a population of individuals characterised by pairs of chromosomes, whose fitness complies with the Pareto ranking of the respective decoded solution. It includes an elitist policy, as well as a new utopic strategy, introduced for purposes of diversification. The computational experiments produced promising results for the practical application of this approach to real life instances arising from a public hospital in Lisbon

    A Two-Stage Dynamic Programming Model for Nurse Rostering Problem Under Uncertainty

    Full text link
    No abstract provided.Master of Science in EngineeringIndustrial and Manufacturing Systems Engineering, College of Engineering and Computer ScienceUniversity of Michigan-Dearbornhttps://deepblue.lib.umich.edu/bitstream/2027.42/140733/1/WENJIE WANG_Thesis_Embedded.pdfDescription of WENJIE WANG_Thesis_Embedded.pdf : Thesi

    Bi-objective Evolutionary Heuristics for Bus Drivers

    Get PDF
    The Bus Driver Rostering Problem refers to the assignment of drivers to the daily schedules of the company's buses, during a planning period of a given duration. The drivers' schedules must comply with legal and institutional rules, namely the Labour Law, labour agreements and the company's specific regulations. This paper presents a bi-objective model for the problem and two evolutionary heuristics differing as to the strategies adopted to approach the Pareto frontier. The first one, the utopian strategy, extends elitism to include an unfeasible solution in the population, and the second one is an adapted version of the well known SPEA2 (Strength Pareto Evolutionary Algorithm). The heuristics' empirical performance is studied with computational tests on a set of instances generated from vehicle and crew schedules. This research shows that both methodologies are adequate to tackle the instances of the Bus Driver Rostering Problem. In fact, in short computing times, they provide the planning department, with several feasible solutions, rosters that are very difficult to obtain manually and, in addition, identify among them the efficient solutions of the bi-objective model

    The challenge of rescheduling nursing staff: Informing the development of a mathematical model decision tool

    Get PDF
    Executive Summary: This report presents the findings and recommendations from a preliminary investigation into how an NHS organisation manages sudden nursing staff shortfalls. Unexpected staff absences, which can occur on a daily basis, can impact on the optimum skill mix for safe effective care delivery. Ward managers would welcome methodological support for daily rescheduling staff (i.e., re-rostering) within electronic rostering system

    Fairness aspects in personnel scheduling

    Get PDF
    In industries like health care, public transport or call centers a shift-based system ensures permanent availability of employees for covering needed services. The resource allocation problem – assigning employees to shifts – is known as personnel scheduling in literature and often aims at minimizing staffing costs. Working in shifts, though, impacts employees’ private lives which adds to the problem of increasing staff shortage in recent years. Therefore, more and more effort is spent on incorporating fairness into scheduling approaches in order to increase employees’ satisfaction. This paper presents a literature review of approaches for personnel scheduling considering fairness aspects. Since fairness is not a quantitative objective, but can be evaluated from different point of views, a large number of fairness measurements exists in the literature. Furthermore, perspective (group vs individual fairness) or time horizon (short-term vs long-term fairness) are often considered very differently. To conclude, we show that a uniform definition and approach for considering fairness in personnel scheduling is challenging and point out gaps for future research

    Advanced Methods and Models for Employee Timetabling Problems

    Get PDF
    This thesis is focused on the design of efficient models and algorithms for employee timetabling problems (ETPs). From our point of view, there are two significant gaps in the current state of the art. The first one, also important in practice, concerns the ETP with strongly varying workforce demand. Unlike the classical Nurse Rostering Problem (NRP) this problem considers dozens of shift types that can cover the demand more precisely than early, late and night shift type used in NRP. In this work we call this problem the Employee Timetabling Problem with a High Diversity of shifts (ETPHD). It comes as no surprise that the exact methods like Integer Linear Programming are not able to find its solution in reasonable time. Therefore, a transformation of ETPHD based on mapping of shift types to shift kinds was proposed. The transformation allows one to design a multistage approach (MSA). The aim of the first two stages is to find an initial ETPHD solution, where a rough position of assigned shifts is determined. This proved to be substantial for the last stage of MSA, where the solution is consequently improved in terms of its quality. In order to verify the MSA performance, a cross evaluation methodology was proposed. It is based on the comparison of the performance provided by more approaches on more combinatorial problems. Therefore, real life ETPHD instances from an airport ground company and also standard benchmark NRP instances were considered. The experiments confirmed the better or equal performance of our approach in the most of the cases. The second gap in the literature is an absence of parallel algorithms for ETPs. We focused on the Nurse Rerostering Problem (NRRP) that appears when a disruption in the roster occurs, e.g., when one of the employees becomes sick. For this purpose, the parallel algorithm solving NRRP was proposed in order to shorten needed computational time. This algorithm was designed for a Graphics Processing Unit (GPU) offering a massive parallelization. To the best of our knowledge, this is the first usage of GPU for ETPs. The performance of the GPU parallel algorithm was tested on the real life NRRP benchmark instances and evaluated from two points of view. Firstly, the quality of the results was compared to the known results from the state of the art. Secondly, the speedup achieved by the parallel algorithm related to the sequential one was verified. In average, the parallel algorithm is able to provide the results of the same quality 15 times faster than the sequential one.Katedra řídicí technik

    An Analysis of Robust Workforce Scheduling Models for a Nurse Rostering Problem

    Get PDF
    Disruptions impacting workforce schedules can be costly. A 1999 study of the United Kingdom\u27s National Health Service estimated that as much as 4% of the total resources spent on staffing were lost to schedule disruptions like absenteeism. Although disruptions can not be eliminated, workforce schedules can be improved to be more responsive to disruptions. One key area of study that has expanded over the past few years is the application of traditional scheduling techniques to re-rostering problems. These efforts have provided methods for responding to schedule disruptions, but typically require deviations to the disrupted schedule. This thesis examines five workforce scheduling models designed for a nurse rostering problem. Each model is designed to produce a robust workforce schedule that remains valid in the midst of disruptions and requires no schedule deviations. Each model is evaluated based on the number of disruptions it can receive before becoming invalid. Nonparametric statistical analysis is used to analyze the disruption data for each model and determine which workforce scheduling model produces the most robust schedule. The results of this research indicate that additional manpower must be applied to the correct skill sets in order to produce robust workforce schedules. Furthermore, workforce managers can consider leaving a portion of the workforce unscheduled (or in reserve) to accommodate schedule disruptions

    Welcome to OR&S! Where students, academics and professionals come together

    Get PDF
    In this manuscript, an overview is given of the activities done at the Operations Research and Scheduling (OR&S) research group of the faculty of Economics and Business Administration of Ghent University. Unlike the book published by [1] that gives a summary of all academic and professional activities done in the field of Project Management in collaboration with the OR&S group, the focus of the current manuscript lies on academic publications and the integration of these published results in teaching activities. An overview is given of the publications from the very beginning till today, and some of the topics that have led to publications are discussed in somewhat more detail. Moreover, it is shown how the research results have been used in the classroom to actively involve students in our research activities
    • …
    corecore