331 research outputs found

    A genetic algorithm approach for the identification of microgrids partitioning into distribution networks

    Get PDF
    In this paper a Genetic Algorithm (GA) is used to partition a distribution network with the aim to minimize the energy exchange among the microgrids (i.e. maximize self-consumption) in presence of distributed generation. The proposed GA is tested on the IEEE prototypical network PG & E 69-bus. The microgrid partitioning is tested over a period of one year with hourly sampled data of real household consumption and real distributed generation data. The proposed GA approach is compared with a Tabu Search (TS) method already presented in the scientific literature. Results show that both GA and TS lead to the identification of equivalent microgrids. However, the GA based approach achieves better convergence results allowing for a reliable network partitioning with less CPU effort. Moreover, the histograms of the power unbalances of the microgrids show unimodal and skewed distributions offering an interesting starting point for the appropriate deployment of storage and control systems

    Upgrading Conventional Distribution Networks by Actively Planning Distributed Generation Based on Virtual Microgrids

    Get PDF

    Structural and Hierarchical Partitioning of Virtual Microgrids in Power Distribution Network

    Get PDF

    Multi-objective optimal power resources planning of microgrids with high penetration of intermittent nature generation and modern storage systems

    Get PDF
    Microgrids are self-controlled entities at the distribution voltage level that interconnect distributed energy resources (DERs) with loads and can be operated in either grid-connected or islanded mode. This type of active distribution network has evolved as a powerful concept to guarantee a reliable, efficient and sustainable electricity delivery as part of the power systems of the future. However, benefits of microgrids, such as the ancillary services (AS) provision, are not possible to be properly exploited before traditional planning methodologies are updated. Therefore, in this doctoral thesis, a named Probabilistic Multi-objective Microgrid Planning methodology with two versions, POMMP and POMMP2, is proposed for effective decision-making on the optimal allocation of DERs and topology definition under the paradigm of microgrids with capacity for providing AS to the main power grid. The methodologies are defined to consider a mixed generation matrix with dispatchable and non-dispatchable technologies, as well as, distributed energy storage systems and both conventional and power-electronic-based operation configurations. The planning methodologies are formulated based on a so-called true-multi-objective optimization problem with a configurable set of three objective functions. Accordingly, the capacity to supply AS is optimally enhanced with the maximization of the available active residual power in grid-connected operation mode; the capital, maintenance, and operation costs of microgrid are minimized, while the revenues from the services provision and participation on liberalized markets are maximized in a cost function; and the active power losses in microgrid´s operation are minimized. Furthermore, a probabilistic technique based on the simulation of parameters from their probabilistic density function and Monte Carlo Simulation is adopted to model the stochastic behavior of the non-dispatchable renewable generation resources and load demand as the main sources of uncertainties in the planning of microgrids. Additionally, POMMP2 methodology particularly enhances the proposal in POMMP by modifying the methodology and optimization model to consider the optimal planning of microgrid's topology with the allocation of DERs simultaneously. In this case, the concept of networked microgrid is contemplated, and a novel holistic approach is proposed to include a multilevel graph-partitioning technique and subsequent iterative heuristic optimization for the optimal formation of clusters in the topology planning and DERs allocation process. This microgrid planning problem leads to a complex non-convex mixed-integer nonlinear optimization problem with multiple contradictory objective functions, decision variables, and diverse constraint conditions. Accordingly, the optimization problem in the proposed POMMP/POMMP2 methodologies is conceived to be solved using multi-objective population-based metaheuristics, which gives rise to the adaptation and performance assessment of two existing optimization algorithms, the well-known Non-dominated Sorting Genetic Algorithm II (NSGAII) and the Multi-objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Furthermore, the analytic hierarchy process (AHP) is tested and proposed for the multi-criteria decision-making in the last step of the planning methodologies. The POMMP and POMMP2 methodologies are tested in a 69-bus and 37-bus medium voltage distribution network, respectively. Results show the benefits of an a posteriori decision making with the true-multi-objective approach as well as a time-dependent planning methodology. Furthermore, the results from a more comprehensive planning strategy in POMMP2 revealed the benefits of a holistic planning methodology, where different planning tasks are optimally and simultaneously addressed to offer better planning results.Las microrredes son entes autocontrolados que operan en media o baja tensión, interconectan REDs con las cargas y pueden ser operadas ya sea en modo conectado a la red o modo isla. Este tipo de red activa de distribución ha evolucionado como un concepto poderoso para garantizar un suministro de electricidad fiable, eficiente y sostenible como parte de los sistemas de energía del futuro. Sin embargo, para explotar los beneficios potenciales de las microrredes, tales como la prestación de servicios auxiliares (AS), primero es necesario formular apropiadas metodologías de planificación. En este sentido, en esta tesis doctoral, una metodología probabilística de planificación de microrredes con dos versiones, POMMP y POMMP2, es propuesta para la toma de decisiones efectiva en la asignación óptima de DERs y la definición de la topología de microrredes bajo el paradigma de una microrred con capacidad para proporcionar AS a la red principal. Las metodologías se definen para considerar una matriz de generación mixta con tecnologías despachables y no despachables, así como sistemas distribuidos para el almacenamiento de energía y la interconnección de recursos con o sin una interfaz basada en dispositivos de electrónica de potencia. Las metodologías de planificación se formulan sobre la base de un problema de optimización multiobjetivo verdadero con un conjunto configurable de tres funciones objetivo. Con estos se pretende optimizar la capacidad de suministro de AS con la maximización de la potencia activa residual disponible en modo conectado a la red; la minimización de los costos de capital, mantenimiento y funcionamiento de la microrred al tiempo que se maximizan los ingresos procedentes de la prestación de servicios y la participación en los mercados liberalizados; y la minimización de las pérdidas de energía activa en el funcionamiento de la microrred. Además, se adopta una técnica probabilística basada en la simulación de parámetros a partir de la función de densidad de probabilidad y el método de Monte Carlo para modelar el comportamiento estocástico de los recursos de generación renovable no despachables. Adicionalmente,la POMMP2 mejora la propuesta de POMMP modificando la metodología y el modelo de optimización para considerar simultáneamente la planificación óptima de la topología de la microrred con la asignación de DERs. Así pues, se considera el concepto de microrredes interconectadas en red y se propone un novedoso enfoque holístico que incluye una técnica de partición de gráficos multinivel y optimización iterativa heurística para la formación óptima de clusters para el planeamiento de la topología y asignación de DERs. Este problema de planificación de microrredes da lugar a un complejo problema de optimización mixto, no lineal, no convexos y con múltiples funciones objetivo contradictorias, variables de decisión y diversas condiciones de restricción. Por consiguiente, el problema de optimización en las metodologías POMMP/POMMP2 se concibe para ser resuelto utilizando técnicas multiobjetivo de optimización metaheurísticas basadas en población, lo cual da lugar a la adaptación y evaluación del rendimiento de dos algoritmos de optimización existentes, el conocido Non-dominated Sorting Genetic Algorithm II (NSGAII) y el Evolutionary Algorithm Based on Decomposition (MOEA/D). Además, se ha probado y propuesto el uso de la técnica de proceso analítico jerárquico (AHP) para la toma de decisiones multicriterio en el último paso de las metodologías de planificación. Las metodologías POMMP/POMMP2 son probadas en una red de distribución de media tensión de 69 y 37 buses, respectivamente. Los resultados muestran los beneficios de la toma de decisiones a posteriori con el enfoque de optimización multiobjetivo verdadero, así como una metodología de planificación dependiente del tiempo. Además, los resultados de la estrategia de planificación con POMMP2 revelan los beneficios de una metodología de planificación holística, en la que las diferentes tareas de planificación se abordan de manera óptima y simultánea para ofrecer mejores resultados de planificación.Línea de investigación: Planificación de redes inteligentes We thank to the Administrative Department of Science, Technology and Innovation - Colciencias, Colombia, for the granted National Doctoral funding program - 647Doctorad

    Operation and restoration of bulk power systems using distributed energy resources and multi-microgrids

    Get PDF
    The fast-paced and meaningful penetration of distributed energy resources (DERs), such as variable renewable energy sources (RESs), concurrently with the widespread occurrence of natural disasters and man-made threats, has raised several challenges for the modern bulk power systems (BPSs) status quo. Although the DERs are demanding new solutions to ensure adequate stability and security levels, these resources enable significant opportunities to improve multiple BPS perspectives. In this view, seeking to capitalize on these novel features, while aware of the significant changes to BPS outlook, this thesis is focused on developing new methods able to capitalize on modern monitoring infrastructures, DERs and control areas opportunities toward the improvement of BPS operation and stability. Specifically, the thesis focuses on: 1) First, a novel method for the improvement of the static security region (SSR) is proposed based on a new network partitioning algorithm. The proposed algorithm focuses on modern BPS with high penetration of variable RES generation. It divides the BPS into coherence areas according to its criticality mapping, and consequently, areas are adaptively associated with SSRs generators groups. To this end, each bus is assigned a criticality index from the potential energy function, whereas this calculation is based on the data of the wide-area measurement system (WAMS) using phasor measurement unit (PMU); 2) Second, a novel area-based sensitivity index for voltage stability support is proposed, exploring both the network-wide sensitivity and the local characteristics of voltage collapse. The developed index focuses on the determination of the most effective buses for voltage support and their respective capability of increasing the system’s load margin. For this, a novel area-based outlook is developed taking advantage of the new possibilities enabled by BPS distributed controllable resources, such as flexible resources (FRs)

    Upgrading Plan for Conventional Distribution Networks Considering Virtual Microgrid Systems

    Get PDF
    It is widely agreed that the integration of distributed generators (DGs) to power systems is an inevitable trend, which can help to solve many issues in conventional power systems, such as environmental pollution and load demand increasing. According to the study of European Liaison on Electricity grid Committed Towards long-term Research Activities (ELECTRA), in the future, the control center of power systems might transfer from transmission networks to distribution networks since most of DGs will be integrated to distribution networks. However, the infrastructure of conventional distribution networks (CDNs) has not enough capabilities to face challenges from DG integration. Therefore, it is necessary to make a long-term planning to construct smart distribution networks (SDNs). Although many planning strategies are already proposed for constructing SDNs, most of them are passive methods which are based on traditional control and operating mechanisms. In this thesis, an active planning framework for upgrading CDNs to SDNs is introduced by considering both current infrastructure of CDNs and future requirements of SDNs. Since conventional centralised control methods have limited capabilities to deal with huge amount of information and manage flexible structure of SDNs, virtual microgrids (VMs) are designed as basic units to realise decentralised control in this framework. Based on the idea of cyber-physical-socioeconomic system (CPSS), the structure and interaction of cyber system layer, physical system layer as well as socioeconomic system layer are considered in this framework to improve the performance of electrical networks. Since physical system layer is the most fundamental and important part in the active planning framework, and it affects the function of the other two layers, a two-phase strategy to construct the physical system layer is proposed. In the two-phase strategy, phase 1 is to partition CDNs and determine VM boundaries, and phase 2 is to determine DG allocation based on the partitioning results obtained in phase 1. In phase 1, a partitioning method considering structural characteristics of electrical networks rather than operating states is proposed. Considering specific characteristics of electrical networks, electrical coupling strength (ECS) is defined to describe electrical connection among buses. Based on the modularity in complex network theories, electrical modularity is defined to judge the performance of partitioning results. The effectiveness of this method is tested in three popular distribution networks. The partitioning method can detect VM boundaries and partitioning results are in accord with structural characteristics of distribution networks. Based on the partitioning results obtained in phase 1, phase 2 is to optimise DG allocation in electrical networks. A bi-level optimisation method is proposed, including an outer optimisation and an inner optimisation. The outer optimisation focus on long-term planning goals to realise autonomy of VMs while the inner optimisation focus on improving the ability of active energy management. Both genetic algorithm and probabilistic optimal power flow are applied to determine the type, size, location and number of DGs. The feasibility of this method is verified by applying it to PG&E 69-bus distribution network. The operation of SDNs with VMs is a very important topic since the integration of DGs will lead to bidirectional power flow and fault current variation in networks. Considering the similarity between microgrids and VMs, a hybrid control and protection scheme for microgrids is introduced, and its effectiveness is tested through Power Systems Computer Aided Design (PSCAD) simulation. Although more research is needed because SDNs are more complicated than microgrids, the hybrid scheme has great potential to be applied to VMs

    Optimal positioning of storage systems in microgrids based on complex networks centrality measures

    Get PDF
    We propose a criterion based on complex networks centrality metrics to identify the optimal position of Energy Storage Systems in power networks. To this aim we study the relation between centrality metrics and voltage fluctuations in power grids in presence of high penetration of renewable energy sources and storage systems. For testing purposes we consider two prototypical IEEE networks and we compute the correlation between node centrality (namely Eigenvector, Closeness, Pagerank, Betweenness) and voltage fluctuations in presence of intermittent renewable energy generators and intermittent loads measured from domestic users. We show that the topological characteristics of the power networks are able to identify the optimal positioning of active and reactive power compensators (such as energy storage systems) used to reduce voltage fluctuations according to the common quality of service standards. Results show that, among the different metrics, eigenvector centrality shows a statistically significant exponential correlation with the reduction of voltage fluctuations. This finding confirms the technical know-how for which storage systems are heuristically positioned far from supply reactive nodes. This also represents an advantage both in terms of computational time, and in terms of planning of wide resilient networks, where a careful positioning of storage systems is needed, especially in a scenario of interconnected microgrids where intermittent distributed energy sources (such as wind or solar) are fully deployed

    Mathematical programming-based models for the distribution networks' decarbonization

    Get PDF
    (English) Climate change is pushing to decarbonize worldwide economies and forcing fossil fuel-based power systems to evolve into power systems based mainly on renewable energies sources (RES). Thus, increasing the energy generated from renewables in the energy supply mix involves transversal challenges at operational, market, political and social levels due to the stochasticity associated with these technologies and their capacity to generate energy at a small scale close to the consumption point. In this regard, the power generation uncertainty can be handled through battery storage systems (BSS) that have become competitive over the last few years due to a significant price reduction and are a potential alternative to mitigate the technical network problems associated with the intermittency of the renewables, providing flexibility to store/supply energy when is required. On the other hand, the capacity of low-cost generation from small-scale power systems (distributed or decentralized generation (DG)) represents an opportunity for both customers and the power system operators. i.e., customers can generate their energy, reduce their network dependency, and participate actively in eventual local energy markets (LEM), while the power system operator can reduce the system losses and increase the power system quality against unexpected external failures. Nevertheless, incorporating these structures and operational frameworks into distribution networks (DN) requires developing sophisticated tools to support decision-making related to the optimal integration of the distributed energy resources (DER) and assessing the performance of new DNs with high DERs penetration under different operational scenarios. This thesis addresses the distribution networks' decarbonization challenge by developing novel algorithms and applying different optimization techniques through three subtopics. The first axis addresses the optimal sizing and allocation of DG and BSS into a DN from deterministic and stochastic approaches, considering the technical network limitation, the electric vehicle (EV) presence, the users capacity to modify their load consumption, and the DG capability to generate reactive power for voltage stability. Besides, a novel algorithm is developed to solve the deterministic and stochastic models for multiple scenarios providing an accurate DERs capacity that should be installed to decrease the external network dependency. The second subtopic assesses the DN capacity to face unlikely scenarios like primary grid failure or natural disasters preventing the energy supply through a deterministic model that modifies the unbalance DN topology into multiple virtual microgrids (VM) balanced, considering the power supplied by DG and the flexibility provided by the storage devices (SD) and demand response (DR). The third axis addresses the emerging transactive energy (TE) schemes in DNs with high DERs penetration at a residential level through two stochastic approaches to model a Peer-to-peer (P2P) energy trading. To this end, the capability of a P2P energy trading scheme to operate on different markets as day-ahead, intraday, flexibility, and ancillary services (AS) market is assessed, while an algorithm is developed to manage the users' information under a decentralized design.(Català) El cambio climático está obligando a descarbonizar las economías de todo el mundo forzando a los sistemas de energía basados en combustibles fósiles a evolucionar hacia sistemas de energía basados principalmente en fuentes de energía renovables (FER). Así, incrementar la energía generada a partir de renovables en el mix energético está implicando retos transversales a nivel operativo, de mercado, político y social debido a la estocasticidad asociada a estas tecnologías y su capacidad de generar electricidad a pequeña escala cerca al punto de consumo. En este sentido, la incertidumbre en la generación de energía eléctrica puede ser manejada a través de sistemas de almacenamiento en baterías (BSS) que se han vuelto competitivos en los últimos años debido a una importante reducción de precios y son una potencial alternativa para mitigar los problemas técnicos de red asociados a la intermitencia de las renovables, proporcionando flexibilidad para almacenar/suministrar energía cuando sea necesario. Por otro lado, la capacidad de generación a bajo costo a partir de sistemas eléctricos de pequeña escala (generación distribuida o descentralizada (GD)) representa una oportunidad tanto para los clientes como para los operadores del sistema eléctrico. Es decir, los clientes pueden generar su energía, reducir su dependencia de la red y participar activamente en eventuales mercados locales de energía (MLE), mientras que el operador del sistema eléctrico puede reducir las pérdidas del sistema y aumentar la calidad del sistema eléctrico frente a fallas externas inesperadas. Sin embargo, incorporar estas estructuras y marcos operativos en las redes de distribución (RD) requiere desarrollar herramientas sofisticadas para apoyar la toma de decisiones relacionadas con la integración óptima de los recursos energéticos distribuidos (RED) y evaluar el desempeño de las nuevas RD con alta penetración de RED bajo diferentes escenarios de operación. Esta tesis aborda el desafío de la descarbonización de las redes de distribución mediante el desarrollo de algoritmos novedosos y la aplicación de diferentes técnicas de optimización a través de tres dimensiones. El primer eje aborda el dimensionamiento y localización óptimos de GD y BSS en una RD desde enfoques determinísticos y estocásticos, considerando la limitación técnica de la red, la presencia de vehículos eléctricos (VE), la capacidad de los usuarios para modificar su consumo de carga y la capacidad de GD para generar potencia reactiva para la estabilidad del voltaje. Además, se desarrolla un algoritmo novedoso para resolver los modelos determinísticos y estocásticos para múltiples escenarios proporcionando una capacidad precisa de RED que debe instalarse para disminuir la dependencia de la red externa. El segundo subtema evalúa la capacidad de la RD para enfrentar escenarios improbables como fallas en la red primaria o desastres naturales que impidan el suministro de energía, a través de un modelo determinista que modifica la topología de la RD desequilibrada en múltiples microrredes virtuales (MV) balanceadas, considerando la potencia suministrada por GD y la flexibilidad proporcionada por los dispositivos de almacenamiento y respuesta a la demanda (DR). El tercer eje aborda los esquemas emergentes de energía transactiva en RDs con alta penetración de RED a nivel residencial a través de dos enfoques estocásticos para modelar un comercio de energía Peer-to-peer (P2P). Para ello, se evalúa la capacidad de un esquema de comercialización de energía P2P para operar en diferentes mercados como el mercado diario, intradiario, de flexibilidad y de servicios complementarios, a la vez que se desarrolla un algoritmo para gestionar la información de los usuarios bajo un esquema descentralizado.Postprint (published version
    corecore