34 research outputs found

    Multi-objective optimization in graphical models

    Get PDF
    Many real-life optimization problems are combinatorial, i.e. they concern a choice of the best solution from a finite but exponentially large set of alternatives. Besides, the solution quality of many of these problems can often be evaluated from several points of view (a.k.a. criteria). In that case, each criterion may be described by a different objective function. Some important and well-known multicriteria scenarios are: · In investment optimization one wants to minimize risk and maximize benefits. · In travel scheduling one wants to minimize time and cost. · In circuit design one wants to minimize circuit area, energy consumption and maximize speed. · In knapsack problems one wants to minimize load weight and/or volume and maximize its economical value. The previous examples illustrate that, in many cases, these multiple criteria are incommensurate (i.e., it is difficult or impossible to combine them into a single criterion) and conflicting (i.e., solutions that are good with respect one criterion are likely to be bad with respect to another). Taking into account simultaneously the different criteria is not trivial and several notions of optimality have been proposed. Independently of the chosen notion of optimality, computing optimal solutions represents an important current research challenge. Graphical models are a knowledge representation tool widely used in the Artificial Intelligence field. They seem to be specially suitable for combinatorial problems. Roughly, graphical models are graphs in which nodes represent variables and the (lack of) arcs represent conditional independence assumptions. In addition to the graph structure, it is necessary to specify its micro-structure which tells how particular combinations of instantiations of interdependent variables interact. The graphical model framework provides a unifying way to model a broad spectrum of systems and a collection of general algorithms to efficiently solve them. In this Thesis we integrate multi-objective optimization problems into the graphical model paradigm and study how algorithmic techniques developed in the graphical model context can be extended to multi-objective optimization problems. As we show, multiobjective optimization problems can be formalized as a particular case of graphical models using the semiring-based framework. It is, to the best of our knowledge, the first time that graphical models in general, and semiring-based problems in particular are used to model an optimization problem in which the objective function is partially ordered. Moreover, we show that most of the solving techniques for mono-objective optimization problems can be naturally extended to the multi-objective context. The result of our work is the mathematical formalization of multi-objective optimization problems and the development of a set of multiobjective solving algorithms that have been proved to be efficient in a number of benchmarks.Muchos problemas reales de optimización son combinatorios, es decir, requieren de la elección de la mejor solución (o solución óptima) dentro de un conjunto finito pero exponencialmente grande de alternativas. Además, la mejor solución de muchos de estos problemas es, a menudo, evaluada desde varios puntos de vista (también llamados criterios). Es este caso, cada criterio puede ser descrito por una función objetivo. Algunos escenarios multi-objetivo importantes y bien conocidos son los siguientes: · En optimización de inversiones se pretende minimizar los riesgos y maximizar los beneficios. · En la programación de viajes se quiere reducir el tiempo de viaje y los costes. · En el diseño de circuitos se quiere reducir al mínimo la zona ocupada del circuito, el consumo de energía y maximizar la velocidad. · En los problemas de la mochila se quiere minimizar el peso de la carga y/o el volumen y maximizar su valor económico. Los ejemplos anteriores muestran que, en muchos casos, estos criterios son inconmensurables (es decir, es difícil o imposible combinar todos ellos en un único criterio) y están en conflicto (es decir, soluciones que son buenas con respecto a un criterio es probable que sean malas con respecto a otra). Tener en cuenta de forma simultánea todos estos criterios no es trivial y para ello se han propuesto diferentes nociones de optimalidad. Independientemente del concepto de optimalidad elegido, el cómputo de soluciones óptimas representa un importante desafío para la investigación actual. Los modelos gráficos son una herramienta para la represetanción del conocimiento ampliamente utilizados en el campo de la Inteligencia Artificial que parecen especialmente indicados en problemas combinatorios. A grandes rasgos, los modelos gráficos son grafos en los que los nodos representan variables y la (falta de) arcos representa la interdepencia entre variables. Además de la estructura gráfica, es necesario especificar su (micro-estructura) que indica cómo interactúan instanciaciones concretas de variables interdependientes. Los modelos gráficos proporcionan un marco capaz de unificar el modelado de un espectro amplio de sistemas y un conjunto de algoritmos generales capaces de resolverlos eficientemente. En esta tesis integramos problemas de optimización multi-objetivo en el contexto de los modelos gráficos y estudiamos cómo diversas técnicas algorítmicas desarrolladas dentro del marco de los modelos gráficos se pueden extender a problemas de optimización multi-objetivo. Como mostramos, este tipo de problemas se pueden formalizar como un caso particular de modelo gráfico usando el paradigma basado en semi-anillos (SCSP). Desde nuestro conocimiento, ésta es la primera vez que los modelos gráficos en general, y el paradigma basado en semi-anillos en particular, se usan para modelar un problema de optimización cuya función objetivo está parcialmente ordenada. Además, mostramos que la mayoría de técnicas para resolver problemas monoobjetivo se pueden extender de forma natural al contexto multi-objetivo. El resultado de nuestro trabajo es la formalización matemática de problemas de optimización multi-objetivo y el desarrollo de un conjunto de algoritmos capaces de resolver este tipo de problemas. Además, demostramos que estos algoritmos son eficientes en un conjunto determinado de benchmarks

    Applying autonomy to distributed satellite systems: Trends, challenges, and future prospects

    Get PDF
    While monolithic satellite missions still pose significant advantages in terms of accuracy and operations, novel distributed architectures are promising improved flexibility, responsiveness, and adaptability to structural and functional changes. Large satellite swarms, opportunistic satellite networks or heterogeneous constellations hybridizing small-spacecraft nodes with highperformance satellites are becoming feasible and advantageous alternatives requiring the adoption of new operation paradigms that enhance their autonomy. While autonomy is a notion that is gaining acceptance in monolithic satellite missions, it can also be deemed an integral characteristic in Distributed Satellite Systems (DSS). In this context, this paper focuses on the motivations for system-level autonomy in DSS and justifies its need as an enabler of system qualities. Autonomy is also presented as a necessary feature to bring new distributed Earth observation functions (which require coordination and collaboration mechanisms) and to allow for novel structural functions (e.g., opportunistic coalitions, exchange of resources, or in-orbit data services). Mission Planning and Scheduling (MPS) frameworks are then presented as a key component to implement autonomous operations in satellite missions. An exhaustive knowledge classification explores the design aspects of MPS for DSS, and conceptually groups them into: components and organizational paradigms; problem modeling and representation; optimization techniques and metaheuristics; execution and runtime characteristics and the notions of tasks, resources, and constraints. This paper concludes by proposing future strands of work devoted to study the trade-offs of autonomy in large-scale, highly dynamic and heterogeneous networks through frameworks that consider some of the limitations of small spacecraft technologies.Postprint (author's final draft

    Approximate Path Searching Method for Single-Satellite Observation and Transmission Task Planning Problem

    Get PDF
    Satellite task planning not only plans the observation tasks to collect images of the earth surface, but also schedules the transmission tasks to download images to the ground station for users’ using, which plays an important role in improving the efficiency of the satellite observation system. However, most of the work to our knowledge, scheduling the observation and transmission tasks separately, ignores the correlation between them in resource (e.g., energy and memory) consumption and acquisition. In this paper, we study the single-satellite observation and transmission task planning problem under a more accurate resource usage model. Two preprocessing strategies including graph partition and nondominated subpaths selection are used to decompose the problem, and an improved label-setting algorithm with the lower bound cutting strategy is proposed to maximize the total benefit. Finally, we compare the proposed method with other three algorithms based on three data sets, and the experimental result shows that our method can find the near-optimal solution in much less time

    Preference-Based Evolutionary Many-Objective Optimization for Agile Satellite Mission Planning

    Get PDF
    With the development of aerospace technologies, the mission planning of agile earth observation satellites has to consider several objectives simultaneously, such as profit, observation task number, image quality, resource balance, and observation timeliness. In this paper, a five-objective mixed-integer optimization problem is formulated for agile satellite mission planning. Preference-based multi-objective evolutionary algorithms, i.e., T-MOEA/D-TCH, T-MOEA/D-PBI, and T-NSGA-III are applied to solve the problem. Problem-specific coding and decoding approaches are proposed based on heuristic rules. Experiments have shown the advantage of integrating preferences in many-objective satellite mission planning. A comparative study is conducted with other state-of-the-art preference-based methods (T-NSGA-II, T-RVEA, and MOEA/D-c). Results have demonstrated that the proposed T-MOEA/D-TCH has the best performance with regard to IGD and elapsed runtime. An interactive framework is also proposed for the decision maker to adjust preferences during the search. We have exemplified that a more satisfactory solution could be gained through the interactive approach.Algorithms and the Foundations of Software technolog

    Suivi écologique des prairies semi-naturelles : analyse statistique de séries temporelles denses d'images satellite à haute résolution spatiale

    Get PDF
    ID ProdINRA 415874Grasslands are a significant source of biodiversity in farmed landscapes that is important to monitor. New generation satellites such as Sentinel-2 offer new opportunities for grassland’s monitoring thanks to their combined high spatial and temporal resolutions. Conversely, the new type of data provided by these sensors involves big data and high dimensional issues because of the increasing number of pixels to process and the large number of spectro-temporal variables. This thesis explores the potential of the new generation satellites to monitor biodiversity and factors that influence biodiversity in semi-natural grasslands. Tools suitable for the statistical analysis of grasslands using dense satellite image time series (SITS) with high spatial resolution are provided. First, we show that the spectro-temporal response of grasslands is characterized by its variability within and among the grasslands. Then, for the statistical analysis, grasslands are modeled at the object level to be consistent with ecological models that represent grasslands at the field scale. We propose to model the distribution of pixels in a grassland by a Gaussian distribution. Following this modeling, similarity measures between two Gaussian distributions robust to the high dimension are developed for the classification of grasslands using dense SITS: the High-Dimensional Kullback-Leibler Divergence and the α-Gaussian Mean Kernel. The latter out-performs conventional methods used with Support Vector Machines for the classification of grasslands according to their management practices and to their age. Finally, indicators of grassland biodiversity issued from dense SITS are proposed through spectro-temporal heterogeneity measures derived from the unsupervised clustering of grasslands. Their correlation with the Shannon index is significant but low. The results suggest that the spectro-temporal variations measured from SITS at a spatial resolution of 10 meters covering the period when the practices occur are more related to the intensity of management practices than to the species diversity. Therefore, although the spatial and spectral properties of Sentinel-2 seem limited to assess the species diversity in grasslands directly, this satellite should make possible the continuous monitoring of factors influencing biodiversity in grasslands. In this thesis, we provided methods that account for the heterogeneity within grasslands and enable the use of all the spectral andtemporal information provided by new generation satellites.Les prairies représentent une source importante de biodiversité dans les paysages agricoles qu’il est important de surveiller. Les satellites de nouvelle génération tels que Sentinel-2 offrent de nouvelles opportunités pour le suivi des prairies grâce à leurs hautes résolutions spatiale et temporelle combinées. Cependant, le nouveau type de données fourni par ces satellites implique des problèmes liés au big data et à la grande dimension des données en raison du nombre croissant de pixels à traiter et du nombre élevé de variables spectro-temporelles. Cette thèse explore le potentiel des satellites de nouvelle génération pour le suivi de la biodiversité et des facteurs qui influencent la biodiversité dans les prairies semi-naturelles. Des outils adaptés à l’analyse statistique des prairies à partir de séries temporelles d’images satellites (STIS) denses à haute résolution spatiale sont proposés. Tout d’abord, nous montrons que la réponse spectro-temporelle des prairies est caractérisée par sa variabilité au sein des prairies et parmi les prairies. Puis, pour les analyses statistiques, les prairies sont modélisées à l’échelle de l’objet pour être cohérent avec les modèles écologiques qui représentent les prairies à l’échelle de la parcelle. Nous proposons de modéliser la distribution des pixels dans une prairie par une loi gaussienne. A partir de cette modélisation, des mesures de similarité entre deux lois gaussiennes robustes à la grande dimension sont développées pour la classification des prairies en utilisant des STIS denses: High-Dimensional Kullback-Leibler Divergence et α-Gaussian Mean Kernel. Cette dernière est plus performante que les méthodes conventionnelles utilisées avec les machines à vecteur de support (SVM) pour la classification du mode de gestion et de l’âge des prairies. Enfin, des indicateurs de biodiversité des prairies issus de STIS denses sont proposés à travers des mesures d’hétérogénéité spectro-temporelle dérivées du clustering non supervisé des prairies. Leur corrélation avec l’indice de Shannon est significative mais faible. Les résultats suggèrent que les variations spectro-temporelles mesurées à partir de STIS à 10 mètres de résolution spatiale et qui couvrent la période où ont lieu les pratiques agricoles sont plus liées à l’intensité des pratiques qu’à la diversité en espèces. Ainsi, bien que les propriétés spatiales et temporelles de Sentinel-2 semblent limitées pour estimer directement la diversité en espèces des prairies, ce satellite devrait permettre le suivi continu des facteurs influençant la biodiversité dans les prairies. Dans cette thèse, nous avons proposé des méthodes qui prennent en compte l’hétérogénéité au sein des prairies et qui permettent l’utilisation de toute l’information spectrale et temporelle fournie par les satellites de nouvelle génération
    corecore