25,396 research outputs found

    Active network management for electrical distribution systems: problem formulation, benchmark, and approximate solution

    Full text link
    With the increasing share of renewable and distributed generation in electrical distribution systems, Active Network Management (ANM) becomes a valuable option for a distribution system operator to operate his system in a secure and cost-effective way without relying solely on network reinforcement. ANM strategies are short-term policies that control the power injected by generators and/or taken off by loads in order to avoid congestion or voltage issues. Advanced ANM strategies imply that the system operator has to solve large-scale optimal sequential decision-making problems under uncertainty. For example, decisions taken at a given moment constrain the future decisions that can be taken and uncertainty must be explicitly accounted for because neither demand nor generation can be accurately forecasted. We first formulate the ANM problem, which in addition to be sequential and uncertain, has a nonlinear nature stemming from the power flow equations and a discrete nature arising from the activation of power modulation signals. This ANM problem is then cast as a stochastic mixed-integer nonlinear program, as well as second-order cone and linear counterparts, for which we provide quantitative results using state of the art solvers and perform a sensitivity analysis over the size of the system, the amount of available flexibility, and the number of scenarios considered in the deterministic equivalent of the stochastic program. To foster further research on this problem, we make available at http://www.montefiore.ulg.ac.be/~anm/ three test beds based on distribution networks of 5, 33, and 77 buses. These test beds contain a simulator of the distribution system, with stochastic models for the generation and consumption devices, and callbacks to implement and test various ANM strategies

    The Burbea-Rao and Bhattacharyya centroids

    Full text link
    We study the centroid with respect to the class of information-theoretic Burbea-Rao divergences that generalize the celebrated Jensen-Shannon divergence by measuring the non-negative Jensen difference induced by a strictly convex and differentiable function. Although those Burbea-Rao divergences are symmetric by construction, they are not metric since they fail to satisfy the triangle inequality. We first explain how a particular symmetrization of Bregman divergences called Jensen-Bregman distances yields exactly those Burbea-Rao divergences. We then proceed by defining skew Burbea-Rao divergences, and show that skew Burbea-Rao divergences amount in limit cases to compute Bregman divergences. We then prove that Burbea-Rao centroids are unique, and can be arbitrarily finely approximated by a generic iterative concave-convex optimization algorithm with guaranteed convergence property. In the second part of the paper, we consider the Bhattacharyya distance that is commonly used to measure overlapping degree of probability distributions. We show that Bhattacharyya distances on members of the same statistical exponential family amount to calculate a Burbea-Rao divergence in disguise. Thus we get an efficient algorithm for computing the Bhattacharyya centroid of a set of parametric distributions belonging to the same exponential families, improving over former specialized methods found in the literature that were limited to univariate or "diagonal" multivariate Gaussians. To illustrate the performance of our Bhattacharyya/Burbea-Rao centroid algorithm, we present experimental performance results for kk-means and hierarchical clustering methods of Gaussian mixture models.Comment: 13 page

    Online Learning of Power Transmission Dynamics

    Full text link
    We consider the problem of reconstructing the dynamic state matrix of transmission power grids from time-stamped PMU measurements in the regime of ambient fluctuations. Using a maximum likelihood based approach, we construct a family of convex estimators that adapt to the structure of the problem depending on the available prior information. The proposed method is fully data-driven and does not assume any knowledge of system parameters. It can be implemented in near real-time and requires a small amount of data. Our learning algorithms can be used for model validation and calibration, and can also be applied to related problems of system stability, detection of forced oscillations, generation re-dispatch, as well as to the estimation of the system state.Comment: 7 pages, 4 figure
    corecore