1,129 research outputs found

    A reference architecture for the collaborative planning modelling process in multi-tier supply chain networks: a Zachman-based approach

    Full text link
    A prominent and contemporary challenge for supply chain (SC) managers concerns the coordination of the efforts of the nodes of the SC in order to mitigate unpredictable market behaviour and satisfy variable customer demand. A productive response to this challenge is to share pertinent market-related information, on a timely basis, in order to effectively manage the decision-making associated with the SC production and transportation planning processes. This paper analyses the most well-known reference modelling languages and frameworks in the collaborative SC field and proposes a novel reference architecture, based upon the Zachman Framework (ZF), for supporting collaborative plan- ning (CP) in multi-level, SC networks. The architecture is applied to an automotive supply chain configuration, where, under a collaborative and decentralised approach, improvements in the service levels for each node were observed. The architecture was shown to provide the base discipline for the organisation of the processes required to manage the CP activity.The authors thanks the support from the project 'Operations Design and Management in Global Supply Chains (GLOBOP)' (Ref. DPI2012-38061-C02-01), funded by the Ministry of Science and Education of Spain, for the supply chain environment research contribution.Hernández Hormazábal, JE.; Lyons, AC.; Poler, R.; Mula, J.; Goncalves, R. (2014). A reference architecture for the collaborative planning modelling process in multi-tier supply chain networks: a Zachman-based approach. Production Planning and Control. 25(13-14):1118-1134. https://doi.org/10.1080/09537287.2013.808842S111811342513-14Al-Mutawah, K., Lee, V., & Cheung, Y. (2008). A new multi-agent system framework for tacit knowledge management in manufacturing supply chains. Journal of Intelligent Manufacturing, 20(5), 593-610. doi:10.1007/s10845-008-0142-0Baïna, S., Panetto, H., & Morel, G. (2009). New paradigms for a product oriented modelling: Case study for traceability. Computers in Industry, 60(3), 172-183. doi:10.1016/j.compind.2008.12.004Berasategi, L., Arana, J., & Castellano, E. (2011). A comprehensive framework for collaborative networked innovation. Production Planning & Control, 22(5-6), 581-593. doi:10.1080/09537287.2010.536628Chan, H. K., & Chan, F. T. S. (2009). A review of coordination studies in the context of supply chain dynamics. International Journal of Production Research, 48(10), 2793-2819. doi:10.1080/00207540902791843Chen, D., Doumeingts, G., & Vernadat, F. (2008). Architectures for enterprise integration and interoperability: Past, present and future. Computers in Industry, 59(7), 647-659. doi:10.1016/j.compind.2007.12.016Choi, Y., Kang, D., Chae, H., & Kim, K. (2006). An enterprise architecture framework for collaboration of virtual enterprise chains. The International Journal of Advanced Manufacturing Technology, 35(11-12), 1065-1078. doi:10.1007/s00170-006-0789-7Choi, Y., Kim, K., & Kim, C. (2005). A design chain collaboration framework using reference models. The International Journal of Advanced Manufacturing Technology, 26(1-2), 183-190. doi:10.1007/s00170-004-2262-9COLQUHOUN, G. J., BAINES, R. W., & CROSSLEY, R. (1993). A state of the art review of IDEFO. International Journal of Computer Integrated Manufacturing, 6(4), 252-264. doi:10.1080/09511929308944576Danilovic, M., & Winroth, M. (2005). A tentative framework for analyzing integration in collaborative manufacturing network settings: a case study. Journal of Engineering and Technology Management, 22(1-2), 141-158. doi:10.1016/j.jengtecman.2004.11.008Derrouiche, R., Neubert, G., Bouras, A., & Savino, M. (2010). B2B relationship management: a framework to explore the impact of collaboration. Production Planning & Control, 21(6), 528-546. doi:10.1080/09537287.2010.488932Dudek, G., & Stadtler, H. (2005). Negotiation-based collaborative planning between supply chains partners. European Journal of Operational Research, 163(3), 668-687. doi:10.1016/j.ejor.2004.01.014Gruat La Forme, F.-A., Genoulaz, V. B., & Campagne, J.-P. (2007). A framework to analyse collaborative performance. Computers in Industry, 58(7), 687-697. doi:10.1016/j.compind.2007.05.007Gutiérrez Vela, F. L., Isla Montes, J. L., Paderewski Rodríguez, P., Sánchez Román, M., & Jiménez Valverde, B. (2007). An architecture for access control management in collaborative enterprise systems based on organization models. Science of Computer Programming, 66(1), 44-59. doi:10.1016/j.scico.2006.10.005Hernández, J. E., Poler, R., Mula, J., & Lario, F. C. (2010). The Reverse Logistic Process of an Automobile Supply Chain Network Supported by a Collaborative Decision-Making Model. Group Decision and Negotiation, 20(1), 79-114. doi:10.1007/s10726-010-9205-7Hernández, J. E., J. Mula, R. Poler, and A. C. Lyons. 2013. “Collaborative Planning in Multi-Tier Supply Chains Supported by a Negotiation-Based Mechanism and Multi-Agent System.”Group Decision and Negotiation Journal. doi:10.1007/s10726-013-9358-2.Jardim-Goncalves, R., Grilo, A., Agostinho, C., Lampathaki, F., & Charalabidis, Y. (2013). Systematisation of Interoperability Body of Knowledge: the foundation for Enterprise Interoperability as a science. Enterprise Information Systems, 7(1), 7-32. doi:10.1080/17517575.2012.684401Kampstra, R. P., Ashayeri, J., & Gattorna, J. L. (2006). Realities of supply chain collaboration. The International Journal of Logistics Management, 17(3), 312-330. doi:10.1108/09574090610717509Kim, W., Chung, M. J., Qureshi, K., & Choi, Y. K. (2006). WSCPC: An architecture using semantic web services for collaborative product commerce. Computers in Industry, 57(8-9), 787-796. doi:10.1016/j.compind.2006.04.007Ku, K.-C., Kao, H.-P., & Gurumurthy, C. K. (2007). Virtual inter-firm collaborative framework—An IC foundry merger/acquisition project. Technovation, 27(6-7), 388-401. doi:10.1016/j.technovation.2007.02.010LEE, J., GRUNINGER, M., JIN, Y., MALONE, T., TATE, A., YOST, G., & OTHER MEMBERS OF THE PIF WORKING GROUP. (1998). The Process Interchange Format and Framework. The Knowledge Engineering Review, 13(1), 91-120. doi:10.1017/s0269888998001015Lee, J., Chae, H., Kim, C.-H., & Kim, K. (2009). Design of product ontology architecture for collaborative enterprises. Expert Systems with Applications, 36(2), 2300-2309. doi:10.1016/j.eswa.2007.12.042Liu, J., Zhang, S., & Hu, J. (2005). A case study of an inter-enterprise workflow-supported supply chain management system. Information & Management, 42(3), 441-454. doi:10.1016/j.im.2004.01.010Marques, D. M. N., & Guerrini, F. M. (2011). Reference model for implementing an MRP system in a highly diverse component and seasonal lean production environment. Production Planning & Control, 23(8), 609-623. doi:10.1080/09537287.2011.572469Mula, J., Peidro, D., & Poler, R. (2010). The effectiveness of a fuzzy mathematical programming approach for supply chain production planning with fuzzy demand. International Journal of Production Economics, 128(1), 136-143. doi:10.1016/j.ijpe.2010.06.007Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceedings of the IEEE, 77(4), 541-580. doi:10.1109/5.24143Noran, O. (2003). An analysis of the Zachman framework for enterprise architecture from the GERAM perspective. Annual Reviews in Control, 27(2), 163-183. doi:10.1016/j.arcontrol.2003.09.002Olorunniwo, F. O., & Li, X. (2010). Information sharing and collaboration practices in reverse logistics. Supply Chain Management: An International Journal, 15(6), 454-462. doi:10.1108/13598541011080437Recker, J., Rosemann, M., Indulska, M., … Green, P. (2009). Business Process Modeling- A Comparative Analysis. Journal of the Association for Information Systems, 10(04), 333-363. doi:10.17705/1jais.00193Rodriguez, K., & Al-Ashaab, A. (2005). Knowledge web-based system architecture for collaborative product development. Computers in Industry, 56(1), 125-140. doi:10.1016/j.compind.2004.07.004Romero, F., Company, P., Agost, M.-J., & Vila, C. (2008). Activity modelling in a collaborative ceramic tile design chain: an enhanced IDEF0 approach. Research in Engineering Design, 19(1), 1-20. doi:10.1007/s00163-007-0040-zSandberg, E. (2007). Logistics collaboration in supply chains: practice vs. theory. The International Journal of Logistics Management, 18(2), 274-293. doi:10.1108/09574090710816977Spekman, R. E., & Carraway, R. (2006). Making the transition to collaborative buyer–seller relationships: An emerging framework. Industrial Marketing Management, 35(1), 10-19. doi:10.1016/j.indmarman.2005.07.002Stevens, W. P., Myers, G. J., & Constantine, L. L. (1974). Structured design. IBM Systems Journal, 13(2), 115-139. doi:10.1147/sj.132.0115Ulieru, M. (2000). A multi-resolution collaborative architecture for web-centric global manufacturing. Information Sciences, 127(1-2), 3-21. doi:10.1016/s0020-0255(00)00026-8Van der Aalst, W. M. P. (1999). Formalization and verification of event-driven process chains. Information and Software Technology, 41(10), 639-650. doi:10.1016/s0950-5849(99)00016-6Zachman, J. A. (1987). A framework for information systems architecture. IBM Systems Journal, 26(3), 276-292. doi:10.1147/sj.263.0276Zapp, M., Forster, C., Verl, A., & Bauernhansl, T. (2012). A Reference Model for Collaborative Capacity Planning Between Automotive and Semiconductor Industry. Procedia CIRP, 3, 155-160. doi:10.1016/j.procir.2012.07.028Zeng, Y., Wang, L., Deng, X., Cao, X., & Khundker, N. (2012). Secure collaboration in global design and supply chain environment: Problem analysis and literature review. Computers in Industry, 63(6), 545-556. doi:10.1016/j.compind.2012.05.00

    A high-level semiotic trust agent scoring model for collaborative virtual organisations

    Get PDF
    In this paper, we describe how a semiotic ladder, together with a supportive trust agent, can be used to address “soft” trust issues in the context of collaborative Virtual Organisations (VO). The intention is to offer all parties better support for trust (as reputation) management including the reduction of risk and improved reliability of VO e-services. The semiotic ladder is intended to support the VO e-service lifecycle through the articulation of e-trust at various levels of system abstraction, including trust as measurable confidence. At the social level, reputation and reliability measures of e-trust are the relevant dimensions as regards choice of VO partner and are also relevant to the negotiation of service level agreements between the VO partners. By contrast, at the lower levels of the trust ladder, e-trust measures typically address the degree to which secure sign on and message level security conforms to various tangible technological security protocols. The novel trust agent provides the e-service consumer with an objective measure of the trustworthiness of the e-service at run-time, just prior to its actual consumption. Specifically, VO e-service consumer confidence level is informed, by leveraging third party objective evidence. This evidence comprises a set of Corporate Governance (CG) scores. These scores are used as a trust proxy for the "real" owner of the VO. There are also inherent limitations associated with the use of CG scores. These are duly acknowledged

    Model-Driven Design and Development of Flexible Automated Production Control Configurations for Industry 4.0

    Get PDF
    The continuous changes of the market and customer demands have forced modern automation systems to provide stricter Quality of service (QoS) requirements. This work is centered in automation production system flexibility, understood as the ability to shift from one controller configuration to a different one, in the most quick and cost-effective way, without disrupting its normal operation. In the manufacturing field, this allows to deal with non-functional requirements such as assuring control system availability or workload balancing, even in the case of failure of a machine, components, network or controllers. Concretely, this work focuses on flexible applications at production level, using Programmable Logic Controllers (PLCs) as primary controllers. The reconfiguration of the control system is not always possible as it depends on the process state. Thus, an analysis of the system state is necessary to make a decision. In this sense, architectures based on industrial Multi Agent Systems (MAS) have been used to provide this support at runtime. Additionally, the introduction of these mechanisms makes the design and the implementation of the control system more complex. This work aims at supporting the design and development of such flexible automation production systems, through the proposed model-based framework. The framework consists of a set of tools that, based on models, automate the generation of control code extensions that add flexibility to the automation production system, according to industry 4.0 paradigm.This work was financed by MCIU/AEI/FEDER, UE (grant number RTI2018-096116-B-I00) and by GV/EJ (grant number IT1324-19)

    Supporting Virtual Enterprise Systems Using Agent Coordination

    Get PDF
    International audienceOpen environments like the Internet or corporate intranets enable a large number of interested enterprises to access, filter, process, and present information on an as-needed basis. These environments support modern applications, such as virtual enterprises and inter-organizational workflow management systems, which involve a number of heterogeneous resources, services, and processes. However, any execution of a virtual enterprise system would yield to disjoining and error-prone behavior without appropriate techniques to coordinate the various business processes. This paper reports on the design and implementation of a flexible agent-based framework for supporting the coordination of virtual enterprises and workflow management systems. The paper also shows how an agent coordination infrastructure, which is explained by social constraints, can impact on the engineering of highly dynamic virtual enterprises and workflow management systems by presenting a simple case study

    On the emergent Semantic Web and overlooked issues

    Get PDF
    The emergent Semantic Web, despite being in its infancy, has already received a lotof attention from academia and industry. This resulted in an abundance of prototype systems and discussion most of which are centred around the underlying infrastructure. However, when we critically review the work done to date we realise that there is little discussion with respect to the vision of the Semantic Web. In particular, there is an observed dearth of discussion on how to deliver knowledge sharing in an environment such as the Semantic Web in effective and efficient manners. There are a lot of overlooked issues, associated with agents and trust to hidden assumptions made with respect to knowledge representation and robust reasoning in a distributed environment. These issues could potentially hinder further development if not considered at the early stages of designing Semantic Web systems. In this perspectives paper, we aim to help engineers and practitioners of the Semantic Web by raising awareness of these issues
    corecore