8,899 research outputs found

    Internal report cluster 1: Urban freight innovations and solutions for sustainable deliveries (3/4)

    Get PDF
    Technical report about sustainable urban freight solutions, part 3 of

    Internal report cluster 1: Urban freight innovations and solutions for sustainable deliveries (2/4)

    Get PDF
    Technical report about sustainable urban freight solutions, part 2 of

    BESTFACT Best Practice Handbook 3

    Get PDF
    The Best Practice Handbook (BPH) gives an overview about current concepts, strategies and actions in freight transport all over Europe. It is disseminating information on successful projects and practices to increase awareness and share experiences. It is enabling knowledge transfer and supporting transferability for best practices. The third and last Best Practice Handbook focuses on the work done over the entire project, with 157 inventory cases and 60 in-depth analyses. After four years of case collection a wide field of solutions is available. The main findings of the BESTFACT cases are cross-checked and summarised for each of the cluster topics. The consistent form of collection and information provision broadens the structural understanding of best practice cases. The synthesis of cases per topic shows that under consideration of barriers and framework conditions replicable impacts are achievable. Main editors are Martin Ruesch & Simon Bohne (Rapptrans) and Jacques Leonardi (UoW). Project leader is Marcel Huschebeck (PTV)

    Integration of e-business strategy for multi-lifecycle production systems

    Get PDF
    Internet use has grown exponentially on the last few years becoming a global communication and business resource. Internet-based business, or e-Business will truly affect every sector of the economy in ways that today we can only imagine. The manufacturing sector will be at the forefront of this change. This doctoral dissertation provides a scientific framework and a set of novel decision support tools for evaluating, modeling, and optimizing the overall performance of e-Business integrated multi-lifecycle production systems. The characteristics of this framework include environmental lifecycle study, environmental performance metrics, hyper-network model of integrated e-supply chain networks, fuzzy multi-objective optimization method, discrete-event simulation approach, and scalable enterprise environmental management system design. The dissertation research reveals that integration of e-Business strategy into production systems can alter current industry practices along a pathway towards sustainability, enhancing resource productivity, improving cost efficiencies and reducing lifecycle environmental impacts. The following research challenges and scholarly accomplishments have been addressed in this dissertation: Identification and analysis of environmental impacts of e-Business. A pioneering environmental lifecycle study on the impact of e-Business is conducted, and fuzzy decision theory is further applied to evaluate e-Business scenarios in order to overcome data uncertainty and information gaps; Understanding, evaluation, and development of environmental performance metrics. Major environmental performance metrics are compared and evaluated. A universal target-based performance metric, developed jointly with a team of industry and university researchers, is evaluated, implemented, and utilized in the methodology framework; Generic framework of integrated e-supply chain network. The framework is based on the most recent research on large complex supply chain network model, but extended to integrate demanufacturers, recyclers, and resellers as supply chain partners. Moreover, The e-Business information network is modeled as a overlaid hypernetwork layer for the supply chain; Fuzzy multi-objective optimization theory and discrete-event simulation methods. The solution methods deal with overall system parameter trade-offs, partner selections, and sustainable decision-making; Architecture design for scalable enterprise environmental management system. This novel system is designed and deployed using knowledge-based ontology theory, and XML techniques within an agent-based structure. The implementation model and system prototype are also provided. The new methodology and framework have the potential of being widely used in system analysis, design and implementation of e-Business enabled engineering systems

    ERA-MIN Research Agenda

    Get PDF
    European Research Area - Network on the Industrial Handling of Raw Materials for European Industriesroadmap of the "ERA-MIN" eranetNon-energy and non-agricultural raw materials underpin the global economy and our quality of life. They are vital for the EU's economy and for the development of environmentally friendly technologies essential to European industries. However, the EU is highly dependent on imports, and securing supplies has therefore become crucial. A sustainable supply of mineral products and metals for European industry requires a more efficient and rational consumption, enhanced substitution and improved recycling. Recycling from scrap to raw materials has been rapidly gaining in quantity and efficiency over the last years. However, continuous re-use cannot provide alone the necessary quantities of mineral raw materials, due to i) recycling losses, ii) the worldwide growing demand in raw materials, and iii) the need of "new" elements for the industry. To fully meet future needs, metals and mineral products from primary sources will still be needed in the future. Most of them will continue to be imported from sources outside Europe; but others can, and should, be produced domestically. Advanced research and innovation are required to improve the capacity of existing technologies to discover new deposits, to improve the efficiency of the entire geomaterials life cycle from mineral extraction to the use as secondary resource of products at the end of their industrial life, and to reduce the environmental footprint of raw materials extraction and use. Research and innovation must be made to acquire knowledge as well, and to improve our basic understanding of all engineering and natural processes involved in the raw materials life cycle, as well as the coupling of these processes. Finally, research has to go beyond the present-day economic and technological constraints, and it should be closely associated with training and education in order to maintain existing skills and to share the most recent developments with the industrial sector. A long-term vision of research is necessary in order to have the capacity of evaluating the environmental and societal impacts of present and developing industrial activities and to imagine tomorrow's breakthrough concepts and technologies that will create new industrial opportunities. These objectives require the input of contrasted scientific and technical skills and competences (earth science, material science and technology, chemistry, physics, engineer, biology, engineering, environmental science, economy, social and human sciences, etc). An important challenge is to gather all these domains of expertise towards the same objective. The ERA-MIN Research Agenda aims at listing the most important topics of research and innovation that will contribute to i) secure the sustainable supply and management of non-energy and non-agricultural raw materials, and ii) offer opportunities of investment and employment opportunities in the EU

    Best practice factory for freight transport in Europe: demonstrating how ‘good’ urban freight cases are improving business profit and public sectors benefits

    Get PDF
    The objective of this study is to better understand why selected urban freight solutions represent innovations that are technically feasible, economically profitable in different contexts, sustainable, transferable, and with tangible beneficial impacts. A total of 15 solutions are evaluated in the fields of Urban Consolidation Centre, clean and electric vehicles, IT solutions, use of urban waterways, and others. Three solutions are analysed more thoroughly, the Cityporto Padova, the Basel Exhibition Centre logistics support system, and the Berlin laboratory area test of the Bentobox. This paper ends with a transversal analysis of the solutions observed, and with methodological conclusions

    Extending the supply chain to address sustainability

    Full text link
    © 2019 Elsevier Ltd In today's growing economy, overconsumption and overproduction have accelerated environmental deterioration worldwide. Consumers, through unsustainable consumption patterns, and producers, through production based on traditional resource depleting practices, have contributed significantly to the socio-environmental problems. Consumers and producers are linked by supply chains, and as sustainability became seen as a way to reverse socio-environmental degradation, it has also started to be introduced in research on supply chains. We look at the evolution of research on sustainable supply chains and show that it is still largely focused on the processes and networks that take place between the producer and the consumer, hardly taking into account consumer behavior and its influence on the performance of the producer and the supply chain itself. We conclude that we cannot be talking about sustainability, without extending the supply chains to account for consumers' behavior and their influence on the overall system performance. A conceptual framework is proposed to explain how supply chains can become sustainable and improve their economic and socio-environmental performance by motivating consumer behavior toward green consumption patterns, which, in turn, motivate producers and suppliers to change their operations
    • 

    corecore