120 research outputs found

    Game Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata

    Full text link
    We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without epsilon-transitions). We first show a general characterization of probabilistic bisimilarity in terms of two-player games, which naturally reduces checking bisimilarity of probabilistic labelled transition systems to checking bisimilarity of standard (non-deterministic) labelled transition systems. This reduction can be easily implemented in the framework of pPDA, allowing to use known results for standard (non-probabilistic) PDA and their subclasses. A direct use of the reduction incurs an exponential increase of complexity, which does not matter in deriving decidability of bisimilarity for pPDA due to the non-elementary complexity of the problem. In the cases of probabilistic one-counter automata (pOCA), of probabilistic visibly pushdown automata (pvPDA), and of probabilistic basic process algebras (i.e., single-state pPDA) we show that an implicit use of the reduction can avoid the complexity increase; we thus get PSPACE, EXPTIME, and 2-EXPTIME upper bounds, respectively, like for the respective non-probabilistic versions. The bisimilarity problems for OCA and vPDA are known to have matching lower bounds (thus being PSPACE-complete and EXPTIME-complete, respectively); we show that these lower bounds also hold for fully probabilistic versions that do not use non-determinism

    Equivalence-Checking on Infinite-State Systems: Techniques and Results

    Full text link
    The paper presents a selection of recently developed and/or used techniques for equivalence-checking on infinite-state systems, and an up-to-date overview of existing results (as of September 2004)

    On the complexity of checking semantic equivalences between pushdown processes and finite-state processes

    Get PDF
    AbstractSimulation preorder/equivalence and bisimulation equivalence are the most commonly used equivalences in concurrency theory. Their standard definitions are often called strong simulation/bisimulation, while weak simulation/bisimulation abstracts from internal τ-actions.We study the computational complexity of checking these strong and weak semantic preorders/equivalences between pushdown processes and finite-state processes.We present a complete picture of the computational complexity of these problems and also study fixed-parameter tractability in two important input parameters: x, the size of the finite control of the pushdown process, and y, the size of the finite-state process.All simulation problems are generally EXPTIME-complete and only become polynomial if both parameters x and y are fixed.Weak bisimulation equivalence is PSPACE-complete, but becomes polynomial if and only if parameter x is fixed.Strong bisimulation equivalence is PSPACE-complete, but becomes polynomial if either parameter x or y is fixed

    Equivalence of infinite-state systems with silent steps

    Get PDF
    This dissertation contributes to analysis methods for infinite-state systems. The dissertation focuses on equivalence testing for two relevant classes of infinite-state systems: commutative context-free processes, and one-counter automata. As for equivalence notions, we investigate the classical bisimulation and simulation equivalences. The important point is that we allow for silent steps in the model, abstracting away from internal, unobservable actions. Very few decidability results have been known so far for bisimulation or simulation equivalence for infinite-state systems with silent steps, as presence of silent steps makes the equivalence problem arguably harder to solve. A standard technique for bisimulation or simulation equivalence testing is to use the hierarchy of approximants. For an effective decision procedure the hierarchy must stabilize (converge) at level omega, the first limit ordinal, which is not the case for the models investigated in this thesis. However, according to a long-standing conjecture, the community believed that the convergence actually takes place at level omega+ omega in the class of commutative context free processes. We disprove the conjecture and provide a lower bound of omega * omega for the convergence level. We also show that all previously known positive decidability results for BPPs can be re-proven uniformly using the improved approximants techniques. Moreover dissertation contains an unsuccesfull attack on one of the main open problems in the area: decidability of weak bisimulation equivalence for commutative context-free processes. Our technical development of this section is not sufficient to solve the problem, but we believe it is a serious step towards a solution. Furtermore, we are able to show decidability of branching (stuttering) bisimulation equivalence, a slightly more discriminating variant of bisimulation equivalence. It is worth emphesizing that, until today, our result is the only known decidability result for bisimulation equivalence in a class of inifinite-state systems with silent steps that is not known to admit convergence of (some variant of) standard approximants at level omega. Finally we consider weak simulation equivalence over one-counter automata without zero tests (allowing zero tests implies undecidability). While weak bisimulation equivalence is known to be undecidable in this class, we prove a surprising result that weak simulation equivalence is actually decidable. Thus we provide a first example going against a trend, widely-believed by the community, that simulation equivalence tends to be computationally harder than bisimulation equivalence. In short words, the dissertation contains three new results, each of them solving a non-trivial open problem about equivalence testing of infinite-state systems with silent steps

    From computability to executability : a process-theoretic view on automata theory

    Get PDF
    The theory of automata and formal language was devised in the 1930s to provide models for and to reason about computation. Here we mean by computation a procedure that transforms input into output, which was the sole mode of operation of computers at the time. Nowadays, computers are systems that interact with us and also each other; they are non-deterministic, reactive systems. Concurrency theory, split off from classical automata theory a few decades ago, provides a model of computation similar to the model given by the theory of automata and formal language, but focuses on concurrent, reactive and interactive systems. This thesis investigates the integration of the two theories, exposing the differences and similarities between them. Where automata and formal language theory focuses on computations and languages, concurrency theory focuses on behaviour. To achieve integration, we look for process-theoretic analogies of classic results from automata theory. The most prominent difference is that we use an interpretation of automata as labelled transition systems modulo (divergence-preserving) branching bisimilarity instead of treating automata as language acceptors. We also consider similarities such as grammars as recursive specifications and finite automata as labelled finite transition systems. We investigate whether the classical results still hold and, if not, what extra conditions are sufficient to make them hold. We especially look into three levels of Chomsky's hierarchy: we study the notions of finite-state systems, pushdown systems, and computable systems. Additionally we investigate the notion of parallel pushdown systems. For each class we define the central notion of automaton and its behaviour by associating a transition system with it. Then we introduce a suitable specification language and investigate the correspondence with the respective automaton (via its associated transition system). Because we not only want to study interaction with the environment, but also the interaction within the automaton, we make it explicit by means of communicating parallel components: one component representing the finite control of the automaton and one component representing the memory. First, we study finite-state systems by reinvestigating the relation between finite-state automata, left- and right-linear grammars, and regular expressions, but now up to (divergence-preserving) branching bisimilarity. For pushdown systems we augment the finite-state systems with stack memory to obtain the pushdown automata and consider different termination styles: termination on empty stack, on final state, and on final state and empty stack. Unlike for language equivalence, up to (divergence-preserving) branching bisimilarity the associated transition systems for the different termination styles fall into different classes. We obtain (under some restrictions) the correspondence between context-free grammars and pushdown automata for termination on final state and empty stack. We show how for contrasimulation, a weaker equivalence than branching bisimilarity, we can obtain the correspondence result without some of the restrictions. Finally, we make the interaction within a pushdown automaton explicit, but in a different way depending on the termination style. By analogy of pushdown systems we investigate the parallel pushdown systems, obtained by augmenting finite-state systems with bag memory, and consider analogous termination styles. We investigate the correspondence between context-free grammars that use parallel composition instead of sequential composition and parallel pushdown automata. While the correspondence itself is rather tight, it unfortunately only covers a small subset of the parallel pushdown automata, i.e. the single-state parallel pushdown automata. When making the interaction within parallel pushdown automata explicit, we obtain a rather uniform result for all termination styles. Finally, we study computable systems and the relation with exective and computable transition systems and Turing machines. For this we present the reactive Turing machine, a classical Turing machine augmented with capabilities for interaction. Again, we make the interaction in the reactive Turing machine between its finite control and the tape memory explicit

    13th international workshop on expressiveness in concurrency

    Get PDF

    A First-Order Complete Temporal Logic for Structured Context-Free Languages

    Full text link
    The problem of model checking procedural programs has fostered much research towards the definition of temporal logics for reasoning on context-free structures. The most notable of such results are temporal logics on Nested Words, such as CaRet and NWTL. Recently, the logic OPTL was introduced, based on the class of Operator Precedence Languages (OPLs), more powerful than Nested Words. We define the new OPL-based logic POTL and prove its FO-completeness. POTL improves on NWTL by enabling the formulation of requirements involving pre/post-conditions, stack inspection, and others in the presence of exception-like constructs. It improves on OPTL too, which instead we show not to be FO-complete; it also allows to express more easily stack inspection and function-local properties. In a companion paper we report a model checking procedure for POTL and experimental results based on a prototype tool developed therefor. For completeness a short summary of this complementary result is provided in this paper too.Comment: Partially supersedes arXiv:1910.0932
    corecore