292 research outputs found

    DynaComm: Accelerating Distributed CNN Training between Edges and Clouds through Dynamic Communication Scheduling

    Full text link
    To reduce uploading bandwidth and address privacy concerns, deep learning at the network edge has been an emerging topic. Typically, edge devices collaboratively train a shared model using real-time generated data through the Parameter Server framework. Although all the edge devices can share the computing workloads, the distributed training processes over edge networks are still time-consuming due to the parameters and gradients transmission procedures between parameter servers and edge devices. Focusing on accelerating distributed Convolutional Neural Networks (CNNs) training at the network edge, we present DynaComm, a novel scheduler that dynamically decomposes each transmission procedure into several segments to achieve optimal layer-wise communications and computations overlapping during run-time. Through experiments, we verify that DynaComm manages to achieve optimal layer-wise scheduling for all cases compared to competing strategies while the model accuracy remains untouched.Comment: 16 pages, 12 figures. IEEE Journal on Selected Areas in Communication

    Towards GPU Utilization Prediction for Cloud Deep Learning

    Get PDF
    Understanding the GPU utilization of Deep Learning (DL) workloads is important for enhancing resource-efficiency and cost-benefit decision making for DL frameworks in the cloud. Current approaches to determine DL workload GPU utilization rely on online profiling within isolated GPU devices, and must be performed for every unique DL workload submission resulting in resource under-utilization and reduced service availability. In this paper, we propose a prediction engine to proactively determine the GPU utilization of heterogeneous DL workloads without the need for in-depth or isolated online profiling. We demonstrate that it is possible to predict DL workload GPU utilization via extracting information from its model computation graph. Our experiments show that the prediction engine achieves an RMSLE of 0.154, and can be exploited by DL schedulers to achieve up to 61.5% improvement to GPU cluster utilization
    • …
    corecore