2,698 research outputs found

    Semantic processing of EHR data for clinical research

    Get PDF
    There is a growing need to semantically process and integrate clinical data from different sources for clinical research. This paper presents an approach to integrate EHRs from heterogeneous resources and generate integrated data in different data formats or semantics to support various clinical research applications. The proposed approach builds semantic data virtualization layers on top of data sources, which generate data in the requested semantics or formats on demand. This approach avoids upfront dumping to and synchronizing of the data with various representations. Data from different EHR systems are first mapped to RDF data with source semantics, and then converted to representations with harmonized domain semantics where domain ontologies and terminologies are used to improve reusability. It is also possible to further convert data to application semantics and store the converted results in clinical research databases, e.g. i2b2, OMOP, to support different clinical research settings. Semantic conversions between different representations are explicitly expressed using N3 rules and executed by an N3 Reasoner (EYE), which can also generate proofs of the conversion processes. The solution presented in this paper has been applied to real-world applications that process large scale EHR data.Comment: Accepted for publication in Journal of Biomedical Informatics, 2015, preprint versio

    RORS: Enhanced Rule-based OWL Reasoning on Spark

    Full text link
    The rule-based OWL reasoning is to compute the deductive closure of an ontology by applying RDF/RDFS and OWL entailment rules. The performance of the rule-based OWL reasoning is often sensitive to the rule execution order. In this paper, we present an approach to enhancing the performance of the rule-based OWL reasoning on Spark based on a locally optimal executable strategy. Firstly, we divide all rules (27 in total) into four main classes, namely, SPO rules (5 rules), type rules (7 rules), sameAs rules (7 rules), and schema rules (8 rules) since, as we investigated, those triples corresponding to the first three classes of rules are overwhelming (e.g., over 99% in the LUBM dataset) in our practical world. Secondly, based on the interdependence among those entailment rules in each class, we pick out an optimal rule executable order of each class and then combine them into a new rule execution order of all rules. Finally, we implement the new rule execution order on Spark in a prototype called RORS. The experimental results show that the running time of RORS is improved by about 30% as compared to Kim & Park's algorithm (2015) using the LUBM200 (27.6 million triples).Comment: 12 page
    corecore