100 research outputs found

    A Generative Human-Robot Motion Retargeting Approach Using a Single RGBD Sensor

    Get PDF
    The goal of human-robot motion retargeting is to let a robot follow the movements performed by a human subject. Typically in previous approaches, the human poses are precomputed from a human pose tracking system, after which the explicit joint mapping strategies are specified to apply the estimated poses to a target robot. However, there is not any generic mapping strategy that we can use to map the human joint to robots with different kinds of configurations. In this paper, we present a novel motion retargeting approach that combines the human pose estimation and the motion retargeting procedure in a unified generative framework without relying on any explicit mapping. First, a 3D parametric human-robot (HUMROB) model is proposed which has the specific joint and stability configurations as the target robot while its shape conforms the source human subject. The robot configurations, including its skeleton proportions, joint limitations, and DoFs are enforced in the HUMROB model and get preserved during the tracking procedure. Using a single RGBD camera to monitor human pose, we use the raw RGB and depth sequence as input. The HUMROB model is deformed to fit the input point cloud, from which the joint angle of the model is calculated and applied to the target robots for retargeting. In this way, instead of fitted individually for each joint, we will get the joint angle of the robot fitted globally so that the surface of the deformed model is as consistent as possible to the input point cloud. In the end, no explicit or pre-defined joint mapping strategies are needed. To demonstrate its effectiveness for human-robot motion retargeting, the approach is tested under both simulations and on real robots which have a quite different skeleton configurations and joint degree of freedoms (DoFs) as compared with the source human subjects

    Generalized Anthropomorphic Functional Grasping with Minimal Demonstrations

    Full text link
    This article investigates the challenge of achieving functional tool-use grasping with high-DoF anthropomorphic hands, with the aim of enabling anthropomorphic hands to perform tasks that require human-like manipulation and tool-use. However, accomplishing human-like grasping in real robots present many challenges, including obtaining diverse functional grasps for a wide variety of objects, handling generalization ability for kinematically diverse robot hands and precisely completing object shapes from a single-view perception. To tackle these challenges, we propose a six-step grasp synthesis algorithm based on fine-grained contact modeling that generates physically plausible and human-like functional grasps for category-level objects with minimal human demonstrations. With the contact-based optimization and learned dense shape correspondence, the proposed algorithm is adaptable to various objects in same category and a board range of robot hand models. To further demonstrate the robustness of the framework, over 10K functional grasps are synthesized to train our neural network, named DexFG-Net, which generates diverse sets of human-like functional grasps based on the reconstructed object model produced by a shape completion module. The proposed framework is extensively validated in simulation and on a real robot platform. Simulation experiments demonstrate that our method outperforms baseline methods by a large margin in terms of grasp functionality and success rate. Real robot experiments show that our method achieved an overall success rate of 79\% and 68\% for tool-use grasp on 3-D printed and real test objects, respectively, using a 5-Finger Schunk Hand. The experimental results indicate a step towards human-like grasping with anthropomorphic hands.Comment: 20 pages, 23 figures and 7 table

    Multi-Character Motion Retargeting for Large Scale Changes

    Get PDF

    Lifelike Agility and Play on Quadrupedal Robots using Reinforcement Learning and Generative Pre-trained Models

    Full text link
    Summarizing knowledge from animals and human beings inspires robotic innovations. In this work, we propose a framework for driving legged robots act like real animals with lifelike agility and strategy in complex environments. Inspired by large pre-trained models witnessed with impressive performance in language and image understanding, we introduce the power of advanced deep generative models to produce motor control signals stimulating legged robots to act like real animals. Unlike conventional controllers and end-to-end RL methods that are task-specific, we propose to pre-train generative models over animal motion datasets to preserve expressive knowledge of animal behavior. The pre-trained model holds sufficient primitive-level knowledge yet is environment-agnostic. It is then reused for a successive stage of learning to align with the environments by traversing a number of challenging obstacles that are rarely considered in previous approaches, including creeping through narrow spaces, jumping over hurdles, freerunning over scattered blocks, etc. Finally, a task-specific controller is trained to solve complex downstream tasks by reusing the knowledge from previous stages. Enriching the knowledge regarding each stage does not affect the usage of other levels of knowledge. This flexible framework offers the possibility of continual knowledge accumulation at different levels. We successfully apply the trained multi-level controllers to the MAX robot, a quadrupedal robot developed in-house, to mimic animals, traverse complex obstacles, and play in a designed challenging multi-agent Chase Tag Game, where lifelike agility and strategy emerge on the robots. The present research pushes the frontier of robot control with new insights on reusing multi-level pre-trained knowledge and solving highly complex downstream tasks in the real world
    • …
    corecore